Problems for the 1-D Wave Equation

1 Problem 1

(i) Suppose that an "infinite string" has an initial displacement

$$
u(x, 0)=f(x)=\left\{\begin{array}{cc}
x+1, & -1 \leq x \leq 0 \\
1-2 x, & 0 \leq x \leq 1 / 2 \\
0, & x<-1 \text { and } x>1 / 2
\end{array}\right.
$$

and zero initial velocity $u_{t}(x, 0)=0$. Write down the solution of the wave equation

$$
u_{t t}=u_{x x}
$$

with ICs $u(x, 0)=f(x)$ and $u_{t}(x, 0)=0$ using D'Alembert's formula. Illustrate the nature of the solution by sketching the $u x$-profiles $y=u(x, t)$ of the string displacement for $t=$ $0,1 / 2,1,3 / 2$.
(ii) Repeat the procedure in (i) for a string that has zero initial displacement but is given an initial velocity

$$
u_{t}(x, 0)=g(x)=\left\{\begin{array}{cc}
-1, & -1 \leq x<0 \\
1, & 0 \leq x \leq 1 \\
0, & x<-1 \text { and } x>1
\end{array}\right.
$$

3 Question 1

[20 points total]

Suppose you shake the end of a rope of dimensionless length 1 at a certain frequency ω. We neglect gravity and friction and model the waves on the rope using the 1D wave equation:

$$
\begin{equation*}
u_{t t}=u_{x x}, \quad 0<x<1, \quad t>0 \tag{1}
\end{equation*}
$$

where u is the displacement of the rope away from its rest state. The rope is attached and held fixed at a wall at $x=0$,

$$
\begin{equation*}
u(0, t)=0, \quad t>0 \tag{2}
\end{equation*}
$$

You shake the other end $(x=1)$ sinusoidally, with frequency ω, and give it the displacement

$$
\begin{equation*}
u(1, t)=\sin \omega t, \quad t>0 \tag{3}
\end{equation*}
$$

We assume the rope has zero initial position and velocity

$$
\begin{align*}
u(x, 0) & =0, & & 0<x<1 \tag{4}\\
u_{t}(x, 0) & =0, & & 0<x<1 \tag{5}
\end{align*}
$$

Note: D'Alembert's solution does not hold for u, because of the BC at $x=1$.
(a) [10 points] Find a solution of the form

$$
\begin{equation*}
U(x, t)=X(x) \sin \omega t \tag{6}
\end{equation*}
$$

that satisfies the PDE (1) and the BCs (2) and (3). (Don't worry about the ICs yet.) Where is the rope stationary (i.e. $U(x, t)=0)$? For what values of ω is your solution invalid?
(b) [10 points] Use $U(x, t)$ from part (a) to find the full solution $u(x, t)$ to the $\operatorname{PDE}(1)$, the BCs (2) and (3), and the ICs (4) and (5). Hint: define a function $v(x, t)$ in terms of $U(x, t)$ and $u(x, t)$ so that $v(x, t)$ satisfies the PDE (1) and has $v(0, t)=0=v(1, t)$ (type I zero BCs). Then write down D'Alembert's solution (without derivation) to satisfy the PDE and initial conditions on $v(x, t)$ (don't evaluate the integral in D'Alembert's solution). Then adjust D'Alembert's solution to handle the zero BCs on $v(x, t)$ at $x=0,1$. You don't need to evaluate the integral.

4 Question 2

[30 points total]
Consider the following quasi-linear PDE,

$$
\begin{equation*}
\frac{\partial u}{\partial t}+(1+2 u) \frac{\partial u}{\partial x}=-u ; \quad u(x, 0)=f(x) \tag{7}
\end{equation*}
$$

where the initial condition is

$$
f(x)=\left\{\begin{array}{cc}
1, & |x|>1 \\
2-|x|, & |x| \leq 1
\end{array}=\left\{\begin{array}{cc}
1, & x<-1 \\
2+x, & -1 \leq x \leq 0 \\
2-x, & 0<x \leq 1 \\
1, & x>1
\end{array}\right.\right.
$$

(a) [8 points] By writing the PDE in the form $(A, B, C) \cdot\left(u_{t}, u_{x},-1\right)=0$, where $C=-u$, find the parametric solution using r as your parameter along a characteristic and s to label the characteristic (i.e. the initial value of x). First write down the relevant ODEs for $\partial t / \partial r$, $\partial x / \partial r, \partial u / \partial r$. Take the initial conditions $t=0$ and $x=s$ at $r=0$. Using the initial condition in (7), write down the IC for u at $r=0$, in terms of s. Solve for t, u and x (in that order!) as functions of r, s. When integrating for x, be careful: u depends on r !
(b) [8 points] At what time $t_{s h}$ and position $x_{s h}$ does your parametric solution break down? Hint: you might need to consider negative values of $f^{\prime}(s)$.
(c) [4 points] Write down x in terms of t, s and $f(s)$. For each of $s=-1,0$, 1 , write down x as a function of t.
(d) [4 points] Fill in the table below, using your result from either (a) or (c) to obtain u and x at the s-values listed at time $t=\ln 2$ (note that $e^{-\ln 2}=\frac{1}{2}$, and you may use $\ln 2=$ 0.7):

$$
t=\ln 2
$$

$s=$	-1	0	1
$u=$			
$x=$			

(e) [6 points] Plot $f(x)$ vs. x. Then, on the SAME plot, plot $u(x, t)$ at $t=\ln 2$ by plotting the three points (x, u) from the table in part (d) and connecting the dots.

