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1 Problem 1 

(i) Suppose that an “infinite string” has an initial displacement 
 

 x + 1, −1 ≤ x ≤ 0 
 

u (x, 0) = f (x) = 1 − 2x, 0 ≤ x ≤ 1/2 
 

 

0, x < −1 and x > 1/2 

and zero initial velocity ut (x, 0) = 0. Write down the solution of the wave equation 

utt = uxx 

with ICs u (x, 0) = f (x) and ut (x, 0) = 0 using D’Alembert’s formula. Illustrate 

the nature of the solution by sketching the ux-profiles y = u (x, t) of the string 

displacement for t = 0, 1/2, 1, 3/2. 

Solution: D’Alembert’s formula is 

1 
� 

� 

x+t 
� 

u (x, t) = f (x − t) + f (x + t) + g (s) ds 
2 x−t 

In this case g (s) = 0 so that 

1 
u (x, t) = (f (x − t) + f (x + t)) (1) 

2 

The problem reduces to adding shifted copies of f (x) and then plotting the associated 

u (x, t). To determine where the functions overlap or where u (x, t) is zero, we plot 

the characteristics x ± t = −1 and x ± t = 1/2 in the space time plane (xt) in Figure 

1. 

For t = 0, (1) becomes 

1 
u (x, 0) = (f (x) + f (x)) = f (x)

2 
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Figure 1: Sketch of characteristics for 1(a).


For t = 1/2, (1) becomes


� � � � �� 

1 1 1 
u (x, t) = f x− + f x+ 

2 2 2 

Note that 
 

1

2 
+ 1, −1 ≤ x−
 1

2 
x− ≤ 0 

1
1

2
,
 0 ≤ x−
 1

2 
f x− = 1 − 2 x−

2 


≤ 1/2 
1

2 

1

2 
0, x−
 < −1 and x− > 1/2





x+
 1
2 

1

2 

1

2
− ≤ x ≤, 

 

1

2 
2 − 2x,
 ≤ x ≤ 1
= 

 

1

2
0, x < −
 and x > 1


 

and similarly, 
 

3

2
,
 −
3

2 

1

2 
≤ x ≤ −x+
 

1 
f x+ = 

2 


1

2
−2x, −
 ≤ x ≤ 0


3

2
and x > 00, x < − 

Thus, over the region −1

2
≤ x ≤ 0 we have to be careful about adding the two 
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functions; in the other regions either one or both functions are zero. We have

� � � � � � �� 

1 1 1 1 
u x, = f x− + f x+ 

2 2 2 2 
 

3

4 
−
3

2 

1

2 

x 

2 
≤ x ≤ −+ , 

 

 

 1

4 

1

2 

x 

2
− −
 ≤ x ≤ 0+ , 

 

1

4 

1

2 

x 

2 
0 ≤ x ≤+= , 

 

1

2
1 − x ≤ x ≤ 1

 

 ,
 

 

 

3

2 
and x > 10, x < − 

For t = 1, your plot of the characteristics shows that f (x− 1) and f (x+ 1) do 

not overlap, so you just have to worry about the different regions. Note that 
 

 (x+ 1) + 1, −1 ≤ x+ 1 ≤ 0 
 

f (x+ 1) = 1 − 2 (x+ 1) , 0 ≤ x+ 1 ≤ 1/2 
 

 

0, x+ 1 < −1 and x+ 1 > 1/2 
 

 x+ 2, −2 ≤ x ≤ −1 
 

= −1 − 2x, −1 ≤ x ≤ −1/2 
 

 

0, x < −2 and x > −1/2 

 

 x, 0 ≤ x ≤ 1 
 

f (x− 1) = 3 − 2x, 1 ≤ x ≤ 3/2 
 

 

0, x < 0 and x > 3/2 

so that 

1 
u (x, 1) = (f (x− 1) + f (x+ 1)) 

2 
 

x 

2 
+ 1, −2 ≤ x ≤ −1 

 

 

 1

2
− − x, −1 ≤ x ≤ −1/2


 

 

x 

2
,
 0 ≤ x ≤ 1
= 

 

3

2
− x, 1 ≤ x ≤ 3/2


 

 

 

 

 

 0, x < −2, −1/2 < x < 0, and x > 3/2 

For t = 3/2, the forward and backward waves are even further apart, and 
 

x−
 1
2
,
 1

2
≤ x ≤
 3

2
 

3 
f x− = 3

2 
4 − 2x ≤ x ≤ 2,


2  

1

2
0,
 and x > 2


 

x < 

 

5

2 

5

2 

3

2
x+
 , − ≤ x ≤ − 

3 
f x+ = 

2 


−2 − 2x, −
3
2
≤ x ≤ −1 

0, x < −5

2 
and x > −1


 
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Figure 2: Plot of u(x, t0) for t
0 = 0, 1/2, 1, 3/2 for 1(a). 

and hence 
� � � � � � �� 

3 1 3 3 
u x,

2 
= 

2 
f x− 

2 
+ f x+ 

2 
 

+ 5

4
,
 −
5

2 

3

2
,
x ≤ x ≤ − 

 

 

 

2 

3

2
−1 − x, − ≤ x ≤ −1, 


 

 

x 

2
−
 1

4 

1

2
≤ x ≤
 3

2
,
= , 

 

 

 2 − x
 

 

 

3

2
≤ x ≤ 2,, 

5

2
< x <
 1

2 

 0, x < − −1 , and x > 2, 

The solution u (x, t0) is plotted at times t 0, 1/2, 1, 3/2 in Figure 2. A 3D version =
0 

of u (x, t) is plotted in Figure 3. 

(ii) Repeat the procedure in (i) for a string that has zero initial displacement but 

is given an initial velocity 
 

 −1, −1 ≤ x < 0 
 

ut (x, 0) = g (x) = 1, 0 ≤ x ≤ 1 
 

 

0, x < −1 and x > 1 

Solution: D’Alembert’s formula is 

1 
� 

� 

x+t 
� 

u (x, t) = f (x− t) + f (x+ t) + g (s) ds 
2 x−t 
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Figure 3: 3D version of u(x, t) for 1(a).

In this case f (s) = 0 so that

u (x, t) =
1

2

�

x+t

x−t

g (s) ds

The problem reduces to noting where x ± t lie in relation to ±1 and evaluating the

integral. These characteristics are plotted in Figure 1 in the notes.

You can proceed in two ways. First, you can draw two more characterstics x±t = 0

so you can decide where the integration variable s is with respect to zero, and hence

if g (s) = −1 or 1. The second way is to note that for a < b and |a| , |b| < 1,

�

b

a

g (s) ds = |b| − |a|

for positive and negative a, b. I’ll use the second method; the answers you get from

the first are the same.

In Region R1,

|x± t| ≤ 1
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and hence there are 3 cases: x− t < 0, x


1 
� 

x+t 

u (x, t) = 
2 x−t 

g (s) ds 

1 
= (|x+ t| − |x− t|)

2 

In Region R2, x+ t > 1 and −1 < x− t < 1, so that 

1 x+t
�

11 1 
u (x, t) = + g (s) ds = g (s) ds 

2 2x−t 1 x−t 

1 
= (1 − |x− t|)

2 

In Region R3, x− t < −1 and −1 < x+ t < 1, so that 

1 
� 

−1 
� 

x+t
� 

1 
� 

x+t 1 
u (x, t) = + g (s) ds = g (s) ds = (|x+ t| − |−1|)

22 x−t −1 2 
−1 

1 
= (|x+ t| − 1) 

2 

In Region R4, x+ t > 1 and x− t < −1, so that 
� 

−1 1 x+t
� 

1 
u (x, t) = + + g (s) ds 

2 x−t −1 1 

11 1 
= g (s) ds = (−1 + 1) 

22 
−1 

= 0 

In Region R5, x+ t < −1 and hence u (x, t) = 0. In region R6, x− t > 1, so that 

u (x, t) = 0. 

At t = 0, 
1 x 

u (x, 0) = g (s) ds = 0 
2 x


At t = 1/2, the regions Rn are given in the notes and

 �� � � � 

1

2 
�x+
 1

2
− �x−
 1

2
, x ∈ R
1 =
 −
1

2
,
1

2
 

 



1

2
1 − �x−
 1

2
, x ∈ R
2 =
 1

2
,
3

2
1
  

u x, = 
2 1

2 

1

2
− 1 , x ∈ R
 =
 −
3

2
,−
1

2 
�x+
 3

 

 

 

 

0, x ∈ R5, R = {|x| > 3/2}6 

The absolute values are easy to resolve (i.e. write without them) in this case. For 

example, for x ∈ [−1/2, 1/2], we have |x− 1/2| = − (x− 1/2). Thus, 
 � � 

−1

2
,
1

2
,
 x ∈ Rx =
1 

 



3

4 

1

2 

3

2 

2 

2 

3

4 

− x 

− x 

1 x ∈ R =, ,2 
u x, = 

−3

2
,−
1

2 
2 − x ∈ R =, 3

 

 

 

 

0, x ∈ R5, R = {|x| > 3/2} 

6 

6 



� � 

� � � � � � 

�� � 

� 

� � � 

� � 

� � � � 

� � � � 

� � � � 

� � � � 

At t = 1, the regions Rn are given in the notes and 
 

 

 

u (x, 1) = 

1

2

1

2 

(1 − |x− 1|) , x ∈ R2 = [0, 2] , 

(|x+ 1| − 1) , x ∈ R3 = [−2, 0] , 
 

 

0, x ∈ R5, R6 = {|x| > 3/2} . 

You could leave your answer like this, or write it without absolute values (have to 

divide [0, 2] and [−2, 0] into cases): 
 

 x/2, x ∈ [0, 1] , 
 

 







 

 

1

2
(2 − x) , x ∈ [1, 2]
 , 
1

2
(x+ 2) x = [−2,−1]
u (x, 1) = −

 

 

 

 

 

 

 

x/2, x = [−1, 0] , 

0, x ∈ R5, R6 = {|x| > 3/2} . 

At t = 3/2, the regions Rn are not given explicitly, but can be found from Figure 

1 in the notes by nothing where the line t = 3/2 crosses each region: 

 

1

2
1 − �x−
 3

2 
� , x ∈ R2 = 1

2
,
5

2
 

3
1

2 
�x+
 3

2
− 1 , x ∈ R3 = −5

2
,−
1

2 
u x, = 

2  

 

0, x ∈ R4, R5, R6 = {|x| > 5/2 or |x| < 1/2} 

Again, you could leave your answer like this, or write it without absolute values (have 

to divide [1/2, 5/2] and [−5/2,−1/2] into cases): 
 

1

2 
x−
 1

2
, x ∈ R2 = 1

2
,
3

2 
 

 

 

5

2 

1

2
− x , x ∈ R2 = 3

2
,
5

2 

 

 

 

3
1

2 
x+
 5

2
,
 x ∈ R3 = −5

2
,−
3

2 
−u x, = 

2  

1

2
x+
 1

2
,
 x ∈ R3 = −3

2
,−
1

2 

 

 

 

 

 

 0, x ∈ R4, R5, R6 = {|x| > 5/2 or |x| < 1/2} 

The solution u (x, t0) is plotted at times t0 = 0, 1/2, 1, 3/2 in Figure 4. 

2 Problem 2 

(i) For an infinite string (i.e. we don’t worry about boundary conditions), what initial 

conditions would give rise to a purely forward wave? Express your answer in terms of 

the initial displacement u (x, 0) = f (x) and initial velocity ut (x, 0) = g (x) and their 
′derivatives f ′ (x), g (x). Interpret the result intuitively. 

Solution: Recall in class that we write D’Alembert’s solution as 

u (x, t) = P (x− t) + Q (x+ t) (2) 
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Figure 4: Plot of u(x, t0) for t0 = 0, 1/2, 1, 3/2 for 1(b). 

where 

1 x 

Q (x) = f (x) + g (s) ds + Q (0) − P (0)	 (3) 
2 0 

1 x 

P (x) = f (x) − g (s) ds − Q (0) + P (0)	 (4) 
2 0 

To only have a forward wave, we must have 

Q (x) = const = q1 

Substituting (3) gives 

1 x 

Q (x) = q1 = f (x) + g (s) ds + Q (0) − P (0) 
2 0 

Differentiating in x gives 
1 df 

0 = + g (x)
2 dx 

Thus 
df 

g (x) = − (5) 
dx 

8 



4 Question 1

[20 points total]

Suppose you shake the end of a rope of dimensionless length 1 at a certain frequency ω.

The opposite end of the rope is fixed to a wall. We aim to find the special frequencies ω at

which certain points along the rope remain fixed in mid air. We negelect gravity and friction

and model the waves on the rope using the 1D wave equation:

utt = uxx, 0 < x < 1, t > 0 (1)

where u is the displacement of the rope away from it’s rest state. The end at the wall (at

x = 0) is fixed:

u (0, t) = 0, t > 0. (2)

You shake the other end (at x = 1) sinusoidally, with frequency ω, and give it the displace-

ment

u (1, t) = sin ωt, t > 0. (3)

We assume the rope has zero initial position and velocity

u (x, 0) = 0, 0 < x < 1, (4)

ut (x, 0) = 0, 0 < x < 1. (5)

(a) [10 points] Find a solution of the form

uS (x, t) = X (x) sin ωt (6)

that satisfies the PDE (1) and the BCs (2) and (3). (Don’t worry about the ICs yet.) Where

is the rope stationary (i.e. us (x, t) = 0)? For what values of ω is your solution invalid?

Solution: From (6), we have

uSxx = X ′′ (x) sin ωt

uStt = −ω2X (x) sin ωt

Thus the PDE (1) implies

X ′′ + ω2X = 0

Solving gives

X (x) = a cos (ωx) + b sin (ωx) (7)

2



Substituting (1) into the BC (2) gives

0 = X (0) sin ωt

and hence X (0) = 0. Thus (7) becomes

0 = X (0) = a

and hence

X (x) = b sin ωx

BC (3) is satisfied if

1 = X (1) = b sin ω

Thus b = 1/ sin ω and

uS (x, t) =
sin ωx

sin ω
sin ωt

Rope stationary at ωx = nπ,

x =
nπ

ω
, n = 1, 2, 3...

such that nπ/ω < 1. Solution invalid when ω = nπ for some n = 1, 2, 3, ....

(b) [10 points] Use uS (x, t) from part (a) to find the full solution u (x, t) to the PDE (1),

the BCs (2) and (3), and the ICs (4) and (5). Hint: use uS (x, t) and u (x, t) to find a wave

problem for some quantity v (x, t) that has Type I BCs (i.e. zero displacement) at x = 0, 1.

Then write down D’Alembert’s solution (without derivation) to satisfy the PDE and initial

conditions for this problem (don’t evalutate the integral in D’Alembert’s solution). Then

adjust D’Alembert’s solution to handle the BCs at x = 0, 1. You don’t need to evaluate the

integral.

Solution: Let v = u − uS. Then

vtt = vxx, 0 < x < 1, t > 0

v (0, t) = 0 = v (1, t) , t > 0

v (x, 0) = u (x, 0) − uS (x, 0) = 0

vt (x, 0) = ut (x, 0) − uSt (x, 0) = 0 −
ω

sin ω
sin ωx

D’Alembert’s solution for the infinite string is

v (x, t) = −
ω

2 sin ω

∫ x+t

x−t

sin (ωs) ds

3



To satisfy the BCs, we must extend sin (ωs) to an odd periodic function in s. Since sin (ωs)

is already odd, we merely need it’s 2−periodic extension,

f̂ (s) = sin (ω (smod2))

where we assume (−s) mod2 = − (smod2), so that

v (x, t) = −
ω

2 sin ω

∫ x+t

x−t

f̂ (s) ds

Thus

u (x, t) = v (x, t) + uS (x, t)

= −
ω

2 sin ω

∫ x+t

x−t

sin (ω (smod2)) ds

+
sin ωx

sin ω
sin ωt

5 Question 2

[30 points total]

Consider the following quasi-linear PDE,

∂u

∂t
+ (1 + 2u)

∂u

∂x
= −u; u (x, 0) = f (x) (8)

where the initial condition is

f (x) =

{

1, |x| > 1

2 − |x| , |x| ≤ 1
=



















1, x < −1

2 + x, −1 ≤ x ≤ 0

2 − x, 0 < x ≤ 1

1, x > 1

(a) [8 points] Find the parametric solution, using r as your parameter along a charac-

teristic and s to label the characteristic (i.e. the initial value of x). First write down the

relevant ODEs for ∂t/∂r, ∂x/∂r, ∂u/∂r. Take the initial conditions t = 0 and x = s at

r = 0. Using the initial condition in (8), write down the IC for u at r = 0, in terms of s.

Solve for t, u and x (in that order!) as functions of r, s. When integrating for x, be careful:

u depends on r!

Solution: The parametric ODEs are

∂t

∂r
= 1,

∂x

∂r
= 1 + 2u,

∂u

∂r
= −u.

4



The ICs are

t (0; s) = 0, x (0; s) = s, u (0; s) = f (x (0; s)) = f (s) (9)

Solving for t and u gives

t = r + c1, ln u = −r + c2

where c1,2 are constants of integration. Thus

u = c3e
−r

Imposing the ICs (9) gives

t = r, u = f (s) e−r = f (s) e−t

Substituting u into the equation for x gives

∂x

∂r
= 1 + 2f (s) e−r

and integrating yields

x = r − 2f (s) e−r + c4

Imposing the IC (9) gives

x = r − 2f (s)
(

e−r − 1
)

+ s

= t − 2f (s)
(

e−t − 1
)

+ s

(b) [8 points] At what time tsh and position xsh does your parametric solution break

down? Hint: you might need to consider negative values of f ′ (s).

Solution: The solution breaks down when the Jacobian is zero:

J = det

(

xr xs

tr ts

)

=
∂x

∂r

∂t

∂s
−

∂x

∂s

∂t

∂r
= −

∂x

∂s

= −
(

−2f ′ (s)
(

e−r − 1
)

+ 1
)

= 0

Since r = t, we solve for t to obtain

tsh = − ln

(

1 +
1

2f ′ (s)

)

5



Note that f ′ (s) is either 0, yielding infinite tsh, 1, yielding negative tsh, and −1, yielding

tsh = − ln

(

1

2

)

= ln 2

Thus the shock time is at ln 2. An s value where f ′ (s) = −1 is s = 1, so that the shock

location is

xsh = tsh − 2f (1)
(

e−tsh − 1
)

+ 1

= ln 2 − 2

(

1

2
− 1

)

+ 1 = ln 2 + 2

(c) [4 points] Write down x in terms of t, s and f (s). For each of s = −1, 0, 1, write

down x as a function of t.

Solution:

s = −1 : x = t − 2
(

e−t − 1
)

− 1

s = 0 : x = t − 4
(

e−t − 1
)

s = 1 : x = t − 2
(

e−t − 1
)

+ 1

(d) [4 points] Fill in the table below, using your result from either question (a) or (c) to

obtain u and x at the s−values listed at time t = ln 2 (note that e− ln 2 = 1

2
, and you may

use ln 2 = 0.7):

t = ln 2

s = −1 0 1

u =

x =

Solution:

t = ln 2

s = −1 0 1

u = 1/2 1 1/2

x = ln 2 ln 2 + 2 ln 2 + 2

(e) [6 points] Plot the initial f (x) vs. x. Then, on the SAME plot, plot u (x, t) at t = ln 2

by plotting the three points (x, u) from the table in part (d).
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