Practice Test 3

1 Rules [requires student signature!]

1. I will use only pencils, pens, erasers, and straight edges to complete this exam.
2. I will NOT use calculators, notes, books or other aides.

Signature: \qquad Date: \qquad .

Please hand in this question sheet with your solutions following the exam.

2 Note

Work on problems (and sub-parts) in any order; just be sure to label the question. Be sure to show a few key intermediate steps and make statements in words when deriving results - answers only will not get full marks. You are free to use any of the information given on the next two pages, without proof, on any question in the exam.

3 Given

You may use the following without proof:
The Laplacian ∇^{2} in polar coordinates is

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

1D Sturm-Liouville Problems: The eigen-solution to

$$
X^{\prime \prime}+\lambda X=0 ; \quad X(0)=0=X(L)
$$

is

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, . .
$$

The eigen-solution to

$$
Y^{\prime \prime}+\lambda Y=0 ; \quad Y^{\prime}(0)=0=Y^{\prime}(L)
$$

is

$$
Y_{n}(x)=\cos \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=0,1,2,3, . .
$$

Orthogonality condition for sines and cosines: for any $L>0$ (e.g. $L=1, \pi, \pi / 2$, etc)

$$
\begin{gathered}
\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=\int_{0}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x=\left\{\begin{array}{cl}
L / 2, & m=n \\
0, & m \neq n
\end{array}\right. \\
\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x=0
\end{gathered}
$$

The general solution to Bessel's Equation

$$
r \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\left(\lambda r^{2}-m^{2}\right) R(r)=0, \quad m=0,1,2,3, \ldots
$$

is

$$
R_{m}(r)=c_{m 1} J_{m}(\sqrt{\lambda} r)+c_{m 2} Y_{m}(\sqrt{\lambda} r)
$$

where $c_{m n}$ are constants of integration, $J_{m}(\sqrt{\lambda} r)$ is bounded as $r \rightarrow 0$ and

$$
\left|Y_{m}(\sqrt{\lambda} r)\right| \rightarrow \infty \text { as } r \rightarrow 0
$$

Orthogonality for Bessel Functions J_{n},

$$
\int_{0}^{1} r J_{n}\left(j_{n, m} r\right) J_{k}\left(j_{k, l} r\right) d r=0, \quad \text { if } n \neq k \text { or } m \neq l
$$

where $j_{n, m}$ is the m^{\prime} 'th zero of the Bessel function of order n. If $n=k$ and $m=l$, just write

$$
\int_{0}^{1} r\left(J_{n}\left(j_{n, m} r\right)\right)^{2} d r \quad(>0)
$$

A useful result derived from the Divergence Theorem,

$$
\begin{equation*}
\iint_{D} v \nabla^{2} v d V=-\iint_{D}|\nabla v|^{2} d V+\int_{\partial D} v \nabla v \cdot \hat{\mathbf{n}} d S \tag{1}
\end{equation*}
$$

for any 2D or 3D region D with closed boundary ∂D.

4 Questions

(a) [10 marks] Solve Laplace's Equation on the quarter unit disc,

$$
\nabla^{2} u(r, \theta)=0
$$

with BCs

$$
\begin{gathered}
u(1, \theta)=g(\theta), \quad u(0, \theta) \text { bounded, } \quad 0<\theta<\pi / 2, \\
u(r, 0)=0, \quad u\left(r, \frac{\pi}{2}\right)=0, \quad 0<r<1 .
\end{gathered}
$$

Be sure to use any relevant given information to save time.
(b) [12 marks] Solve the Heat Problem on the unit quarter disc

$$
v_{t}=\nabla^{2} v, \quad 0<r<1, \quad 0<\theta<\pi / 2, \quad t>0
$$

subject to inhomogeneous BCs

$$
\begin{gathered}
v(1, \theta, t)=g(\theta), \quad v(0, \theta, t) \text { bounded, } \quad 0<\theta<\pi / 2, \quad t>0, \\
v(r, 0, t)=0, \quad v\left(r, \frac{\pi}{2}, t\right)=0, \quad 0<r<1, \quad t>0,
\end{gathered}
$$

and initial condition

$$
v(r, \theta, 0)=f(r, \theta), \quad 0<r<1, \quad 0<\theta<\pi / 2 .
$$

Your solution will have coefficients in terms of integrals involving $f(r, \theta)$.
(c) [8 marks] Prove the solution to (b) is unique. Hint: The steps follow those for the 1D rod, but you'll need to use a result derived from the Divergence Theorem (on the given page) instead of integration by parts. You don't need to consider r, θ : denoting the region by D and using $d V$ will work fine.

