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1 Rules [requires student signature!] 

1. I will use only pencils, pens, erasers, and straight edges to complete this exam. 

2. I will NOT use calculators, notes, books or other aides. 

Signature: Date: . 

Please hand in this question sheet with your solutions following the exam. 

2 Note 

Work on problems (and sub-parts) in any order; just be sure to label the question. 

Be sure to show a few key intermediate steps and make statements in words when 

deriving results - answers only will not get full marks. You are free to use any of the 

information given on the next two pages, without proof, on any question in the exam. 
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3 Given 

You may use the following without proof: 

The Laplacian ∇2 in polar coordinates is 

∂21 ∂ ∂u 1 u
2 u = r +∇ 

r ∂r ∂r r2 ∂θ2 

1D Sturm-Liouville Problems: The eigen-solution to 

′′ X + λX = 0; X (0) = 0 = X (L) 

is 
) ( nπ )2( nπx 

Xn (x) = sin , λn = , n = 1, 2, 3, .. 
L L 

The eigen-solution to 

′′ ′ ′ Y + λY = 0; Y (0) = 0 = Y (L) 

is 
) ( nπ )2( nπx 

Yn (x) = cos , λn = , n = 0, 1, 2, 3, .. 
L L 

Orthogonality condition for sines and cosines: for any L > 0 (e.g. L = 1, π, π/2, etc) 

{ 
∫ L ∫ L( mπx ) ( nπx ) ( mπx ) ( nπx ) L/2, m = n, 

sin sin dx = cos cos dx = 
0 L L 0 L L 0, m = n. 6

∫ L ( ) ( )mπx nπx 
sin cos dx = 0 

L L0 

The general solution to Bessel’s Equation 

d dR ( 
2 
) 

r r + λr 2 − m R (r) = 0, m = 0, 1, 2, 3, ... 
dr dr 

is 

Rm (r) = cm1Jm 

√
λr + cm2Ym 

√
λr 

where cmn are constants of integration, Jm 

√
λr is bounded as r 0 and →

∣ Ym 

√
λr 

∣ → ∞ as r 0.→

Orthogonality for Bessel Functions Jn, 

∫ 
1 

rJn (jn,mr) Jk (jk,lr) dr = 0, if n = k or m = l 
0 
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[ ] 

[ ] √ 

where jn,m is the m’th zero of the Bessel function of order n. If n = k and m = l, 

just write 
∫ 

1 

r (Jn (jn,mr))2 dr (> 0) 
0 

A useful result derived from the Divergence Theorem, 

2 v∇ 2vdV = 
D 

|∇v| dV + v∇v ndS (1) 
D 

− 
∂D 

· ˆ

for any 2D or 3D region D with closed boundary ∂D. 

The Jacobian determinant of the change of variable (r, s) → (x, t) is 

∂ (x, t) xr xs ∂x ∂t ∂x ∂t 

∂ (r, s) 
= det 

tr ts 
= xrts − xstr = 

∂r ∂s 
−

∂s ∂r 

Rayleigh Quotient: 

D 
∇v · ∇vdV 2 

R (v) = ∫ ∫ ∫ = ∫ ∫ D 
∫

|∇v| dV 

v2dV v2dV 
D D 

Trig identities: 

1 
sin a sin b = (cos (a − b) − cos (a + b)) 

2 
1 

cos a cos b = (cos (a − b) + cos (a + b)) 
2 

sin (a + b) = sin a cos b + sin b cos a 

cos (a + b) = cos a cos b − sin a sin b 

The spatial Fourier Transform of u(x, t) and f(x) are defined as


1 
∫ 

∞


U (ω, t) = F [u (x, t)] (ω) =
 u (x, t) e iωxdx 
2π 

−∞ 

1 
∫ 

∞ 

F (ω) = F [f (x)] (ω) = f (x) e iωxdx 
2π 

−∞ 

The Inverse Fourier Transforms of U (ω, t) and F (ω) are defined as 
∫ 

∞ 

u (x, t) = F −1 U (ω, t) (x) = U (ω, t) e −iωxdω 
−∞ 

∫ 
∞ 

f (x) = F −1 [F (ω)] (x) = F (ω) e −iωxdω 
−∞ 

The IFT of a Gaussian is 

−1 −αω2 π 
−x2/4α (2) e = eF 

α 

where α can involve constants or variables, but must be independent of ω and x. 
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( ) 

4 Questions 

4.1 Question 1 

[30 marks, suggested time: 30-40 mins] 

(a) [10 marks] Solve Laplace’s Equation on the quarter unit disc, 

2 u (r, θ) = 0∇ 

with BCs 

u (1, θ) = g (θ) , u (0, θ) bounded, 0 < θ < π/2, 
( π) 

u (r, 0) = 0, u r, = 0, 0 < r < 1. 
2 

Be sure to use any relevant given information to save time. 

(b) [12 marks] Solve the Heat Problem on the unit quarter disc 

2 vt = v, 0 < r < 1, 0 < θ < π/2, t > 0,∇ 

subject to inhomogeneous BCs 

v (1, θ, t) = g (θ) , v (0, θ, t) bounded, 0 < θ < π/2, t > 0, 

( π ) 
v (r, 0, t) = 0, v r, 

2
, t = 0, 0 < r < 1, t > 0, 

and initial condition 

v (r, θ, 0) = f (r, θ) , 0 < r < 1, 0 < θ < π/2. 

Your solution will have coefficients in terms of integrals involving f (r, θ). 

(c) [8 marks] Prove the solution to (b) is unique. Hint: The steps follow those 

for the 1D rod, but you’ll need to use a result derived from the Divergence Theorem 

(on the given page) instead of integration by parts. You don’t need to consider r, θ: 

denoting the region by D and using dV will work fine. 

Solution: (a) Separate variables as 

u (r, θ) = R (r) H (θ) 

so that the PDE becomes 

r d dR 1 d2H 
r = = λ 

R dr dr 
−

H dθ2 
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( ) 

∑ ∑ 

∑ 

where λ is constant, since the l.h.s. depends only on r and the r.h.s. only on θ. 

Separating the BCs gives 

u (r, 0) = 0 H (0) = 0 
( π) 

⇒ 
u r, = 0 H (π/2) = 0 

2 
⇒ 

We solve for H (θ) first: 

′′ H + λH = 0; H (0) = 0 = H (π/2) . 

Using the given information, we have 

nπθ 
H (θ) = sin = sin (2nθ) , n = 1, 2, 3... 

π/2 

and λ = 4n2 . Thus, the equation for R (r) is 

d dR 
r r + (2n)2 R = 0 
dr dr 

Try R = rα, so that α = ±2n: 

−2nR = c1r 
2n + c2r 

For R (0) to be bounded, we must have c2 = 0. Putting things together gives 

un (r, θ) = R (r) H (θ) = r 2n sin (2nθ) , n = 1, 2, 3... 

Using superposition, the general solution is 

∞ ∞ 

Anr 2n u (r, θ) = Anun (r, θ) = sin (2nθ) 
n=1 n=1 

where the An’s are found using the BC at r = 1 and orthogonality, 

∞ 

g (θ) = u (1, θ) = An sin (2nθ) 
n=1 

Multiplying by sin (2mθ) and integrating from θ = 0 to θ = π/2 gives 

∫ π/2 π 1 
g (θ) sin (2mθ) dθ = Am 

2 20 

Thus 
4 
∫ π/2 

Am = g (θ) sin (2mθ) dθ 
π 0 
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(b) First, let 

V (r, θ, t) = v (r, θ, t) − u (r, θ) 

where u (r, θ) was found in part (a). Then V (r, θ, t) satisfies the homogeneous prob

lem, 

Vt = 2V, 0 < r < 1, 0 < θ < π/2, t > 0,∇ 

V (1, θ, t) = 0, V (0, θ, t) bounded, 0 < r < 1, t > 0, 
( π )


V (r, 0, t) = 0, V r,
 , t = 0, 0 < θ < π/2, t > 0,
2

and initial condition 

V (r, θ, 0) = f (r, θ) − u (r, θ) , 0 < r < 1, 0 < θ < π/2. 

We separate variables as 

V (r, θ, t) = R (r) H (θ) T (t) 

so that the PDE becomes 

T ′ 1 d dR 1 d2H 
= r = 

T rR dr dr 
+ 

r2H dθ2 
−λ 

where λ is constant since the lhs depends only on t, and the rhs on r, θ. Since the 

solution must decay, we expect λ > 0. Or we could argue this from general theory. 

From the middle equation, we have 

r d dR 1 d2H 
r + λr 2 = = µ

R dr dr 
−

H dθ2 

again, since the lhs depends on r only and the rhs on θ only. Separating the BCs 

yields 

V (1, θ, t) = 0 R (1) = 0⇒ 

V (1, θ, t) bounded R (0) < ∞⇒ | |

V (r, 0, t) = 0 H (0) = 0, 
( π ) )

⇒ 
( π 

V r, , t = 0 H = 0. 
2

⇒ 
2 

The problem for H (θ) is the same as before, thus 

H (θ) = sin (2nθ) 

and µ = 4n2 . Thus 
d dR ( ) 

r r + λr 2 − (2n)2 R = 0 
dr dr 
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( ) 

∑ ∑ 

∑ ∑ 

and hence the general solution is 

R (r) = c1J2n 

√
λr + c2Y2n 

√
λr 

Since R (0) must be bounded, c2 = 0. The other BC is 

1 = R (1) = c1J2n 

√
λ 

Thus λnm = j
2

2 

n,m, where j2n,m is the m’th zero of J2n. 

Thus, for n,m = 1, 2, 3, ... 

Vnm (r, θ, t) = J2n (rj2n,m) sin (2nθ) e −λnmt 

solves the PDE and BCs. To solve the IC, we sum over n, m and use superposition, 

∞ ∞ 

V (r, θ, t) = AnmJ2n (rj2n,m) sin (2nθ) e −λnmt 

n=1 m=1 

where the Anm ’s are found from the IC and orthogonality: 

∞ ∞ 

f (r, θ) = AnmJ2n (rj2n,m) sin (2nθ) 
n=1 m=1 

Multiplying by rJ2k (rj2k,l) sin (2kθ) and integrating in r, θ, we have 

π 
∫ 

1
∫ 

1 
∫ π/2


(f (r, θ) − u (r, θ)) rJ2k (rj2k,l) sin (2kθ) dθ = Akl
 r (J2k (rj2k,l))
2 dr 

r=0 θ=0 4 r=0 

Thus 
∫ 

1 
∫ π/2 

4 θ=0 
(f (r, θ) − u (r, θ)) rJ2k (rj2k,l) sin (2kθ) dθ 

r=0
Akl = 
π 

∫ 
1 

r (J2k (rj2k,l))
2 dr


r=0 

Finally, 

v (r, θ, t) = V (r, θ, t) + u (r, θ) 

(c) Take 2 solutions v1, v2. Define the difference h = v1 − v2. Note that h satisfies 

ht = 2h, 0 < r < 1, 0 < θ < π/2, t > 0,∇ 

h (1, θ, t) = 0, h (0, θ, t) bounded, 0 < r < 1, t > 0, 
( π )


h (r, 0, t) = 0, h r,
 , t = 0, 0 < θ < π/2, t > 0,
2

h (r, θ, 0) = 0, 0 < r < 1, 0 < θ < π/2. 
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∫ ∫ 

∫ ∫ ∫ ∫ 

∫ ∫ ∫ 

∫ ∫ 

∫ ∫ 

Define the mean square difference between solutions,


V̄ (t) = h2dV ≥ 0 
D 

Differentiate in time, 

¯dV (t) 
= 2hhtdV = 2h∇ 2hdV 

dt D D 

ˆ= −2 
D 

|∇v| 2 dV + 2 v∇v ndS · 
∂D 

But v = 0 on the boundary, so that 

¯dV (t) −2 2 = dV ≤ 0 
dt D 

|∇v| 

Note that at t = 0, 

V̄ (0) = (f (r, θ) − f (r, θ))2 dV = 0 
D 

¯Thus, V (t) is a non-negative, non-increasing function, that starts at zero. Hence 

V̄ (t) = 0 for all time, which implies by continuity that h (r, θ, t) = 0 for all r, θ, t. 

Hence v1 = v2, and the solution to (b) is unique. 
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