Solutions to Practice Test 3

1 Rules [requires student signature!]

1. I will use only pencils, pens, erasers, and straight edges to complete this exam.
2. I will NOT use calculators, notes, books or other aides.

Signature: \qquad Date: \qquad .

Please hand in this question sheet with your solutions following the exam.

2 Note

Work on problems (and sub-parts) in any order; just be sure to label the question. Be sure to show a few key intermediate steps and make statements in words when deriving results - answers only will not get full marks. You are free to use any of the information given on the next two pages, without proof, on any question in the exam.

3 Given

You may use the following without proof:
The Laplacian ∇^{2} in polar coordinates is

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

1D Sturm-Liouville Problems: The eigen-solution to

$$
X^{\prime \prime}+\lambda X=0 ; \quad X(0)=0=X(L)
$$

is

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, . .
$$

The eigen-solution to

$$
Y^{\prime \prime}+\lambda Y=0 ; \quad Y^{\prime}(0)=0=Y^{\prime}(L)
$$

is

$$
Y_{n}(x)=\cos \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=0,1,2,3, . .
$$

Orthogonality condition for sines and cosines: for any $L>0$ (e.g. $L=1, \pi, \pi / 2$, etc)

$$
\begin{gathered}
\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=\int_{0}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x=\left\{\begin{array}{cl}
L / 2, & m=n \\
0, & m \neq n
\end{array}\right. \\
\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x=0
\end{gathered}
$$

The general solution to Bessel's Equation

$$
r \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\left(\lambda r^{2}-m^{2}\right) R(r)=0, \quad m=0,1,2,3, \ldots
$$

is

$$
R_{m}(r)=c_{m 1} J_{m}(\sqrt{\lambda} r)+c_{m 2} Y_{m}(\sqrt{\lambda} r)
$$

where $c_{m n}$ are constants of integration, $J_{m}(\sqrt{\lambda} r)$ is bounded as $r \rightarrow 0$ and

$$
\left|Y_{m}(\sqrt{\lambda} r)\right| \rightarrow \infty \text { as } r \rightarrow 0
$$

Orthogonality for Bessel Functions J_{n},

$$
\int_{0}^{1} r J_{n}\left(j_{n, m} r\right) J_{k}\left(j_{k, l} r\right) d r=0, \quad \text { if } n \neq k \text { or } m \neq l
$$

where $j_{n, m}$ is the m 'th zero of the Bessel function of order n. If $n=k$ and $m=l$, just write

$$
\int_{0}^{1} r\left(J_{n}\left(j_{n, m} r\right)\right)^{2} d r \quad(>0)
$$

A useful result derived from the Divergence Theorem,

$$
\begin{equation*}
\iint_{D} v \nabla^{2} v d V=-\iint_{D}|\nabla v|^{2} d V+\int_{\partial D} v \nabla v \cdot \hat{\mathbf{n}} d S \tag{1}
\end{equation*}
$$

for any 2D or 3D region D with closed boundary ∂D.

4 Questions

(a) [10 marks] Solve Laplace's Equation on the quarter unit disc,

$$
\nabla^{2} u(r, \theta)=0
$$

with BCs

$$
\begin{gathered}
u(1, \theta)=g(\theta), \quad u(0, \theta) \text { bounded, } \quad 0<\theta<\pi / 2, \\
u(r, 0)=0, \quad u\left(r, \frac{\pi}{2}\right)=0, \quad 0<r<1 .
\end{gathered}
$$

Be sure to use any relevant given information to save time.
(b) [12 marks] Solve the Heat Problem on the unit quarter disc

$$
v_{t}=\nabla^{2} v, \quad 0<r<1, \quad 0<\theta<\pi / 2, \quad t>0
$$

subject to inhomogeneous BCs

$$
\begin{gathered}
v(1, \theta, t)=g(\theta), \quad v(0, \theta, t) \text { bounded, } \quad 0<\theta<\pi / 2, \quad t>0, \\
v(r, 0, t)=0, \quad v\left(r, \frac{\pi}{2}, t\right)=0, \quad 0<r<1, \quad t>0
\end{gathered}
$$

and initial condition

$$
v(r, \theta, 0)=f(r, \theta), \quad 0<r<1, \quad 0<\theta<\pi / 2 .
$$

Your solution will have coefficients in terms of integrals involving $f(r, \theta)$.
(c) [8 marks] Prove the solution to (b) is unique. Hint: The steps follow those for the 1D rod, but you'll need to use a result derived from the Divergence Theorem (on the given page) instead of integration by parts. You don't need to consider r, θ : denoting the region by D and using $d V$ will work fine.

Solution: (a) Separate variables as

$$
u(r, \theta)=R(r) H(\theta)
$$

so that the PDE becomes

$$
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)=-\frac{1}{H} \frac{d^{2} H}{d \theta^{2}}=\lambda
$$

where λ is constant, since the l.h.s. depends only on r and the r.h.s. only on θ. Separating the BCs gives

$$
\begin{aligned}
u(r, 0) & =0 \Rightarrow H(0)=0 \\
u\left(r, \frac{\pi}{2}\right) & =0 \Rightarrow H(\pi / 2)=0
\end{aligned}
$$

We solve for $H(\theta)$ first:

$$
H^{\prime \prime}+\lambda H=0 ; \quad H(0)=0=H(\pi / 2)
$$

Using the given information, we have

$$
H(\theta)=\sin \left(\frac{n \pi \theta}{\pi / 2}\right)=\sin (2 n \theta), \quad n=1,2,3 \ldots
$$

and $\lambda=4 n^{2}$. Thus, the equation for $R(r)$ is

$$
r \frac{d}{d r}\left(r \frac{d R}{d r}\right)+(2 n)^{2} R=0
$$

Try $R=r^{\alpha}$, so that $\alpha= \pm 2 n$:

$$
R=c_{1} r^{2 n}+c_{2} r^{-2 n}
$$

For $R(0)$ to be bounded, we must have $c_{2}=0$. Putting things together gives

$$
u_{n}(r, \theta)=R(r) H(\theta)=r^{2 n} \sin (2 n \theta), \quad n=1,2,3 \ldots
$$

Using superposition, the general solution is

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} u_{n}(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{2 n} \sin (2 n \theta)
$$

where the A_{n} 's are found using the BC at $r=1$ and orthogonality,

$$
g(\theta)=u(1, \theta)=\sum_{n=1}^{\infty} A_{n} \sin (2 n \theta)
$$

Multiplying by $\sin (2 m \theta)$ and integrating from $\theta=0$ to $\theta=\pi / 2$ gives

$$
\int_{0}^{\pi / 2} g(\theta) \sin (2 m \theta) d \theta=A_{m} \frac{\pi}{2} \frac{1}{2}
$$

Thus

$$
A_{m}=\frac{4}{\pi} \int_{0}^{\pi / 2} g(\theta) \sin (2 m \theta) d \theta
$$

(b) First, let

$$
V(r, \theta, t)=v(r, \theta, t)-u(r, \theta)
$$

where $u(r, \theta)$ was found in part (a). Then $V(r, \theta, t)$ satisfies the homogeneous problem,

$$
\begin{aligned}
& V_{t}=\nabla^{2} V, \quad 0<r<1, \quad 0<\theta<\pi / 2, \quad t>0, \\
& V(1, \theta, t)=0, \quad V(0, \theta, t) \text { bounded, } \quad 0<r<1, \quad t>0, \\
& V(r, 0, t)=0, \quad V\left(r, \frac{\pi}{2}, t\right)=0, \quad 0<\theta<\pi / 2, \quad t>0,
\end{aligned}
$$

and initial condition

$$
V(r, \theta, 0)=f(r, \theta)-u(r, \theta), \quad 0<r<1, \quad 0<\theta<\pi / 2 .
$$

We separate variables as

$$
V(r, \theta, t)=R(r) H(\theta) T(t)
$$

so that the PDE becomes

$$
\frac{T^{\prime}}{T}=\frac{1}{r R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\frac{1}{r^{2} H} \frac{d^{2} H}{d \theta^{2}}=-\lambda
$$

where λ is constant since the lhs depends only on t, and the rhs on r, θ. Since the solution must decay, we expect $\lambda>0$. Or we could argue this from general theory. From the middle equation, we have

$$
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\lambda r^{2}=-\frac{1}{H} \frac{d^{2} H}{d \theta^{2}}=\mu
$$

again, since the lhs depends on r only and the rhs on θ only. Separating the BCs yields

$$
\begin{gathered}
V(1, \theta, t)=0 \Rightarrow R(1)=0 \\
V(1, \theta, t) \text { bounded } \Rightarrow|R(0)|<\infty \\
V(r, 0, t)=0 \Rightarrow H(0)=0 \\
V\left(r, \frac{\pi}{2}, t\right)=0 \Rightarrow H\left(\frac{\pi}{2}\right)=0
\end{gathered}
$$

The problem for $H(\theta)$ is the same as before, thus

$$
H(\theta)=\sin (2 n \theta)
$$

and $\mu=4 n^{2}$. Thus

$$
r \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\left(\lambda r^{2}-(2 n)^{2}\right) R=0
$$

and hence the general solution is

$$
R(r)=c_{1} J_{2 n}(\sqrt{\lambda} r)+c_{2} Y_{2 n}(\sqrt{\lambda} r)
$$

Since $R(0)$ must be bounded, $c_{2}=0$. The other BC is

$$
1=R(1)=c_{1} J_{2 n}(\sqrt{\lambda})
$$

Thus $\lambda_{n m}=j_{2 n, m}^{2}$, where $j_{2 n, m}$ is the m 'th zero of $J_{2 n}$.
Thus, for $n, m=1,2,3, \ldots$

$$
V_{n m}(r, \theta, t)=J_{2 n}\left(r j_{2 n, m}\right) \sin (2 n \theta) e^{-\lambda_{n m} t}
$$

solves the PDE and BCs. To solve the IC, we sum over n, m and use superposition,

$$
V(r, \theta, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} J_{2 n}\left(r j_{2 n, m}\right) \sin (2 n \theta) e^{-\lambda_{n m} t}
$$

where the $A_{n m}$'s are found from the IC and orthogonality:

$$
f(r, \theta)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} J_{2 n}\left(r j_{2 n, m}\right) \sin (2 n \theta)
$$

Multiplying by $r J_{2 k}\left(r j_{2 k, l}\right) \sin (2 k \theta)$ and integrating in r, θ, we have

$$
\int_{r=0}^{1} \int_{\theta=0}^{\pi / 2}(f(r, \theta)-u(r, \theta)) r J_{2 k}\left(r j_{2 k, l}\right) \sin (2 k \theta) d \theta=A_{k l} \frac{\pi}{4} \int_{r=0}^{1} r\left(J_{2 k}\left(r j_{2 k, l}\right)\right)^{2} d r
$$

Thus

$$
A_{k l}=\frac{4}{\pi} \frac{\int_{r=0}^{1} \int_{\theta=0}^{\pi / 2}(f(r, \theta)-u(r, \theta)) r J_{2 k}\left(r j_{2 k, l}\right) \sin (2 k \theta) d \theta}{\int_{r=0}^{1} r\left(J_{2 k}\left(r j_{2 k, l}\right)\right)^{2} d r}
$$

Finally,

$$
v(r, \theta, t)=V(r, \theta, t)+u(r, \theta)
$$

(c) Take 2 solutions v_{1}, v_{2}. Define the difference $h=v_{1}-v_{2}$. Note that h satisfies

$$
\begin{aligned}
h_{t} & =\nabla^{2} h, \quad 0<r<1, \quad 0<\theta<\pi / 2, \quad t>0 \\
h(1, \theta, t) & =0, \quad h(0, \theta, t) \text { bounded }, \quad 0<r<1, \quad t>0 \\
h(r, 0, t) & =0, \quad h\left(r, \frac{\pi}{2}, t\right)=0, \quad 0<\theta<\pi / 2, \quad t>0 \\
& h(r, \theta, 0)=0, \quad 0<r<1, \quad 0<\theta<\pi / 2 .
\end{aligned}
$$

Define the mean square difference between solutions,

$$
\bar{V}(t)=\iint_{D} h^{2} d V \geq 0
$$

Differentiate in time,

$$
\begin{aligned}
\frac{d \bar{V}(t)}{d t} & =\iint_{D} 2 h h_{t} d V=\iint_{D} 2 h \nabla^{2} h d V \\
& =-2 \iint_{D}|\nabla v|^{2} d V+2 \int_{\partial D} v \nabla v \cdot \hat{\mathbf{n}} d S
\end{aligned}
$$

But $v=0$ on the boundary, so that

$$
\frac{d \bar{V}(t)}{d t}=-2 \iint_{D}|\nabla v|^{2} d V \leq 0
$$

Note that at $t=0$,

$$
\bar{V}(0)=\iint_{D}(f(r, \theta)-f(r, \theta))^{2} d V=0
$$

Thus, $\bar{V}(t)$ is a non-negative, non-increasing function, that starts at zero. Hence $\bar{V}(t)=0$ for all time, which implies by continuity that $h(r, \theta, t)=0$ for all r, θ, t. Hence $v_{1}=v_{2}$, and the solution to (b) is unique.

