GENERAL REMARKS

- Staple your work together.
- Write neatly.

Section 1.2 Problem Notes

- (1) (Problem 1.2.13) When you use the result that $0 \cdot v = \vec{0}$, you need to either prove the result or state that it is from Theorem 1.2 (a). This is a general requirement for proofs in this class: every claim either has to be proven or you must appeal to a result from class or the textbook.
- (2) (Problem 1.2.13) You have to be careful about the zero vector for this problem. Since $(a,b) + (0,0) = (a+0,b\cdot 0) = (a,0) \neq (a,b)$ then we have that (0,0) is NOT the zero vector in this vector space. Instead, (0,1) is since $(a,b) + (0,1) = (a+0,b\cdot 1) = (a,b)$. Thus you must be cautious about (VS3); just because there is not an obvious "zero" vector doesn't mean there isn't one, this would be something you have to prove.
- (3) (Problem 1.2.13) This problem shows that the set V can have different addition and scalar multiplication operations, which may give rise to different vector space structures for V. So, just because $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$ in the usual vector space structure for V doesn't tell us that this problem's addition and scalar multiplication operations are wrong. Because the operations are different, we get different facts, like a zero vector of (0, 1) and failure of (VS4) in part because (-a, -b) is no longer an additive inverse of (a, b) with these operations (and furthermore there are elements without any additive inverse).
- (4) (Problem 1.2.16) Luckily for some of you, this problem wasn't graded. You cannot just answer a question like this with a simple yes or no. You have to explain your reasoning.

Section 1.3 Problem Notes

- (5) (1.3.19) A reminder about the structure of an iff. proof. Statements of the form "statement A iff. statement B" have two directions of proof. For example, in this question you first (\implies) assume that $W_1 \cup W_2$ is a vector space and then you show that this fact implies that one of the vector spaces had to have been contained in the other. Second (\Leftarrow , which here is the easy direction), you assume that one of the subspaces is actually contained in the other and use this assumption to show that their union is a vector space.
 - The most common way that people showed the first direction for this problem, is by contradiction: assume $W_1 \cup W_2$ is a vector space but neither subspace is contained in the other. This means we can find $x \in W_1 \setminus W_2$ and $y \in W_2 \setminus W_1$, i.e., x and y are only in one of the subspaces. Since $W_1 \cup W_2$ is a vector space then $x + y \in W_1 \cup W_2$ so either $x + y \in W_1$ or $x + y \in W_2$. In the first case, $(x + y) x = y \in W_1$. But this contradicts our choice of y, namely we chose $y \notin W_1$. Hence our assumption that neither subspace is contained in the other must be false, showing this direction. ¹
 - An alternative way to showing the first direction directly is showing the contrapositive: $\neg B \implies \neg A$. In this case this would be first assuming that neither of $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$ is true and then using this assumption to show that $W_1 \cup W_2$ is not a subspace.
 - When I write "iff." and take off points, it usually means you forgot to show one of the directions.

¹A common error was made where you chose $x \in W_1$ and $y \in W_2$. Then as before $x + y \in W_1$ OR $x + y \in W_2$, which implies either $y \in W_1$ or $x \in W_2$. This fails to show containment because maybe some choice of x always forces $y \in W_1$ but not $x \in W_2$ and some special choice of y does the opposite, breaking either possibility of containment.