
Remarks on Assignment 3

Section 2.3 Problem Notes

2.3.12.

(1) Since these facts are used frequently in other proofs, I shall give a detalied proof below:
Let T : V → W and U : W → Z be linear maps, so then UT : V → Z is also a linear

map.
(a) Assume UT is one-to-one. Since UT is linear, this means it has trivial null space, and

in other words if UT (v) = 0 then v = 0.
Since T is a linear map, we show that it is one-to-one by showing that its nullspace is
trivial: Assume T (v) = 0 for some v ∈ V . Then UT (v) = U(T (v)) = U(0) = 01 since
U is linear. Hence v = 0 since UT is one-to-one. Therefore T is one-to-one.
For one example of UT one-to-one but not U , let T : R2 → R3 be the inclusion map
T (x, y) = (x, y, 0) and U : R3 → R be projection onto the first coordinate: U(x, y, z) =
(x, y). Then UT (x, y) = U(x, y, 0) = (x, y) so UT : R2 → R2 is the identity map and
thus definitely injective, even though U isn’t2 So, what’s happening here is U is one-to-
one on the range of T , but sends many elements to the same place outside the range of
T .

(b) Assume UT is onto. To show that U is onto, let c ∈ Z and we want to find a b ∈ W
such that U(b) = c. Since UT is onto, there exists a ∈ V such that UT (a) = c. This
means U(T (a)) = c hence letting b = T (a) gives us a U -preimage for arbitrary c ∈ Z
and thus U is onto.
For one example of UT onto but not T , look no further than the example above. T
isn’t onto because it doesn’t map to anything with nonzero third coordinate, but UT
is onto.

(c) If both U and T are one-to-one and onto, then since they are linear they are isomor-
phisms.3

If UT (v) = 0 then U(T (v)) = 0, hence T (v) is in the kernel of U . But, U is one-to-one
and linear, so T (v) = 0. Again we have T is one-to-one and linear, so v = 0, hence UT
is linear with trivial kernel, thus is one-to-one.
Let c ∈ Z. Then since U is onto there is a b ∈ W such that U(b) = c. Since T is onto
there is an a ∈ V such that T (a) = U(b). Hence UT (a) = U(T (a)) = U(b) = c and so
UT is onto.

(2) A few people tried a proof by contrapositive here, but didn’t have the right negation.

Section 2.4 Problem Notes

2.4.15. Appealing to 2.1.14(c) doesn’t work on two accounts: (i) it doesn’t show both directions
(ii) we haven’t done that exercise.

Also note that this problem was covered in the exam review session I held last Monday.

Section 2.5 Problem Notes

2.5.2. The idea for these is to write the matrix representation of the identity map from β′ coordi-

nates to β coordinates: [I]ββ′ .

So, you take each basis vector in β′ and express it as a linear combination of the β basis elements.
These coefficients will give you a column of your change of basis matrix.

1Writing out this equation is the clearest way to demonstrate this, because it tells us why UT (v) = 0 — something
many proofs left out

2Nul(U) = {(x, y, z) ∈ R3 : x = y = 0} = {0} × {0} × R.
3We are showing that a composition of isomorphisms is an isomorphism.



(a) This one is the easiest: What is (a1, a2) in the standard basis: (a1, a2) = a1e1 + a2e2. Thus the

first column is

[
a1
a2

]
, we similarly find the second column to get [I]ββ′ =

[
a1 b1
a2 b2

]
(b) One way to do this is to solve (0, 10) = a1(−1, 3) + a2(2,−1).

Since β′ is just scaling and reordering the standard basis, it’s easy to find the change of

coordinates in the opposite direction first: [I]β
′

β =

[
3
10

1
10

1
5

2
5

]
The direction we want is

[I]ββ′ = ([I]β
′

β )−1 =

[
3
10 − 1

10
−1

5
2
5

]−1
I find this to be an easy way to do these problems, because finding the inverse of a 2 × 2

matrix has an easy trick: [
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
Thus

[I]ββ′ =
1

1
50(6− 1)

[
2
5

1
10

1
5

3
10

]
=

[
4 1
2 3

]
(c) Again, it’s easier to find [I]β

′

β =

[
2 −1
5 −3

]
and invert it to get

[I]ββ′ =
1

−1

[
−3 1
−5 2

]
=

[
3 −1
5 −2

]
(d) Finally, use the following identity (sort of a cancellation rule for basis change that can make

calculations easy when the inverse is easy to calculate):

[I]ββ′ = [I]βstd[I]stdβ′

where std refers to the standard basis.
Then we find [I]stdγ pretty easily, and invert it where necessary:

[I]ββ′ = [I]βstd[I]stdβ′ = ([I]stdβ )−1[I]stdβ′ =

[
−4 2
3 −1

]−1 [
2 −4
1 1

]
So,

[I]ββ′ =
1

−2

[
−1 −2
−3 −4

] [
2 −4
1 1

]
=

[
2 −1
5 4

]
Of course, you can also do this by solving

(2, 1) = a1(−4, 3) + a2(2,−1)

(−4, 1) = b1(−4, 3) + b2(2,−1)

And then [I]ββ′ =

[
a1 b1
a2 b2

]
, but I personally find the first way a little more enlightening.


