Section 2.3 Problem Notes

2.3.12.

(1) Since these facts are used frequently in other proofs, I shall give a detalied proof below:

Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear maps, so then $U T: V \rightarrow Z$ is also a linear map.
(a) Assume $U T$ is one-to-one. Since $U T$ is linear, this means it has trivial null space, and in other words if $U T(v)=0$ then $v=0$.
Since T is a linear map, we show that it is one-to-one by showing that its nullspace is trivial: Assume $T(v)=0$ for some $v \in V$. Then $U T(v)=U(T(v))=U(0)=0^{1}$ since U is linear. Hence $v=0$ since $U T$ is one-to-one. Therefore T is one-to-one.
For one example of $U T$ one-to-one but not U, let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the inclusion map $T(x, y)=(x, y, 0)$ and $U: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be projection onto the first coordinate: $U(x, y, z)=$ (x, y). Then $U T(x, y)=U(x, y, 0)=(x, y)$ so $U T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the identity map and thus definitely injective, even though U isn't 2 So, what's happening here is U is one-toone on the range of T, but sends many elements to the same place outside the range of T.
(b) Assume $U T$ is onto. To show that U is onto, let $c \in Z$ and we want to find a $b \in W$ such that $U(b)=c$. Since $U T$ is onto, there exists $a \in V$ such that $U T(a)=c$. This means $U(T(a))=c$ hence letting $b=T(a)$ gives us a U-preimage for arbitrary $c \in Z$ and thus U is onto.
For one example of $U T$ onto but not T, look no further than the example above. T isn't onto because it doesn't map to anything with nonzero third coordinate, but $U T$ is onto.
(c) If both U and T are one-to-one and onto, then since they are linear they are isomorphisms. ${ }^{3}$
If $U T(v)=0$ then $U(T(v))=0$, hence $T(v)$ is in the kernel of U. But, U is one-to-one and linear, so $T(v)=0$. Again we have T is one-to-one and linear, so $v=0$, hence $U T$ is linear with trivial kernel, thus is one-to-one.
Let $c \in Z$. Then since U is onto there is a $b \in W$ such that $U(b)=c$. Since T is onto there is an $a \in V$ such that $T(a)=U(b)$. Hence $U T(a)=U(T(a))=U(b)=c$ and so $U T$ is onto.
(2) A few people tried a proof by contrapositive here, but didn't have the right negation.

Section 2.4 Problem Notes

2.4.15. Appealing to 2.1.14(c) doesn't work on two accounts: (i) it doesn't show both directions (ii) we haven't done that exercise.

Also note that this problem was covered in the exam review session I held last Monday.

Section 2.5 Problem Notes

2.5.2. The idea for these is to write the matrix representation of the identity map from β^{\prime} coordinates to β coordinates: $[I]_{\beta^{\prime}}^{\beta}$.

So, you take each basis vector in β^{\prime} and express it as a linear combination of the β basis elements. These coefficients will give you a column of your change of basis matrix.

[^0](a) This one is the easiest: What is $\left(a_{1}, a_{2}\right)$ in the standard basis: $\left(a_{1}, a_{2}\right)=a_{1} e_{1}+a_{2} e_{2}$. Thus the first column is $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$, we similarly find the second column to get $[I]_{\beta^{\prime}}^{\beta}=\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$
(b) One way to do this is to solve $(0,10)=a_{1}(-1,3)+a_{2}(2,-1)$.

Since β^{\prime} is just scaling and reordering the standard basis, it's easy to find the change of coordinates in the opposite direction first: $[I]_{\beta}^{\beta^{\prime}}=\left[\begin{array}{cc}3 & \frac{1}{10} \\ \frac{1}{5} & \frac{2}{5}\end{array}\right]$

The direction we want is

$$
[I]_{\beta^{\prime}}^{\beta}=\left([I]_{\beta}^{\beta^{\prime}}\right)^{-1}=\left[\begin{array}{cc}
\frac{3}{10} & -\frac{1}{10} \\
-\frac{1}{5} & \frac{2}{5}
\end{array}\right]^{-1}
$$

I find this to be an easy way to do these problems, because finding the inverse of a 2×2 matrix has an easy trick:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus

$$
[I]_{\beta^{\prime}}^{\beta}=\frac{1}{\frac{1}{50}(6-1)}\left[\begin{array}{cc}
\frac{2}{5} & \frac{1}{10} \\
\frac{1}{5} & \frac{3}{10}
\end{array}\right]=\left[\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right]
$$

(c) Again, it's easier to find $[I]_{\beta}^{\beta^{\prime}}=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]$ and invert it to get

$$
[I]_{\beta^{\prime}}^{\beta}=\frac{1}{-1}\left[\begin{array}{ll}
-3 & 1 \\
-5 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & -1 \\
5 & -2
\end{array}\right]
$$

(d) Finally, use the following identity (sort of a cancellation rule for basis change that can make calculations easy when the inverse is easy to calculate):

$$
[I]_{\beta^{\prime}}^{\beta}=[I]_{s t d}^{\beta}[I]_{\beta^{\prime}}^{s t d}
$$

where $s t d$ refers to the standard basis.
Then we find $[I]_{\gamma}^{\text {std }}$ pretty easily, and invert it where necessary:

$$
[I]_{\beta^{\prime}}^{\beta}=[I]_{s t d}^{\beta}[I]_{\beta^{\prime}}^{s t d}=\left([I]_{\beta}^{s t d}\right)^{-1}[I]_{\beta^{\prime}}^{s t d}=\left[\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right]^{-1}\left[\begin{array}{cc}
2 & -4 \\
1 & 1
\end{array}\right]
$$

So,

$$
[I]_{\beta^{\prime}}^{\beta}=\frac{1}{-2}\left[\begin{array}{ll}
-1 & -2 \\
-3 & -4
\end{array}\right]\left[\begin{array}{cc}
2 & -4 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 4
\end{array}\right]
$$

Of course, you can also do this by solving

$$
\begin{aligned}
(2,1) & =a_{1}(-4,3)+a_{2}(2,-1) \\
(-4,1) & =b_{1}(-4,3)+b_{2}(2,-1)
\end{aligned}
$$

And then $[I]_{\beta^{\prime}}^{\beta}=\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$, but I personally find the first way a little more enlightening.

[^0]: ${ }^{1}$ Writing out this equation is the clearest way to demonstrate this, because it tells us why $U T(v)=0$ - something many proofs left out
 ${ }^{2} \operatorname{Nul}(U)=\left\{(x, y, z) \in \mathbb{R}^{3}: x=y=0\right\}=\{0\} \times\{0\} \times \mathbb{R}$.
 ${ }^{3} \mathrm{We}$ are showing that a composition of isomorphisms is an isomorphism.

