Math 4377/6308 Advanced Linear Algebra Chapter 1 Review and Solution to Problems

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

Every vector space has a unique additive identity.

Proof. Suppose there are two additive identities 0 and 0^{\prime}. Then

$$
0^{\prime}=0+0^{\prime}=0,
$$

where the first equality holds since 0 is an identity and the second equality holds since 0^{\prime} is an identity. Hence $0=0^{\prime}$, proving that the additive identity is unique.

Every $v \in V$ has a unique additive inverse.

Proof. Suppose w and w^{\prime} are additive inverses of v so that $v+w=0$ and $v+w^{\prime}=0$. Then

$$
w=w+0=w+\left(v+w^{\prime}\right)=(w+v)+w^{\prime}=0+w^{\prime}=w^{\prime}
$$

Hence $w=w^{\prime}$, as desired.

$0 v=0$ for all $v \in V$.

Proof. For $v \in V$, we have by distributivity that

$$
0 v=(0+0) v=0 v+0 v .
$$

Adding the additive inverse of $0 v$ to both sides, we obtain

$$
0=0 v-0 v=(0 v+0 v)-0 v=0 v .
$$

$a 0=0$ for all $a \in F$.

$$
a 0=a(0+0)=a 0+a 0
$$

Adding the additive inverse of $a 0$ to both sides, we obtain $0=a 0$, as desired.

$(-1) v=-v$ for every $v \in V$.

Proof. For $v \in V$, we have

$$
v+(-1) v=1 v+(-1) v=(1+(-1)) v=0 v=0
$$

which shows that $(-1) v$ is the additive inverse $-v$ of v.

The list of vectors $\left(v_{1}, \cdots, v_{m}\right)$ is linearly independent if and only if every $v \in \operatorname{span}\left(v_{1}, \cdots, v_{m}\right)$ can be uniquely written as a linear combination of $\left(v_{1}, \cdots, v_{m}\right)$.
(" \Longrightarrow ") Assume that $\left(v_{1}, \ldots, v_{m}\right)$ is a linearly independent list of vectors. Suppose there are two ways of writing $v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ as a linear combination of the v_{i} :

$$
\begin{aligned}
& v=a_{1} v_{1}+\cdots a_{m} v_{m} \\
& v=a_{1}^{\prime} v_{1}+\cdots a_{m}^{\prime} v_{m}
\end{aligned}
$$

Subtracting the two equations yields $0=\left(a_{1}-a_{1}^{\prime}\right) v_{1}+\cdots+\left(a_{m}-a_{m}^{\prime}\right) v_{m}$. Since $\left(v_{1}, \ldots, v_{m}\right)$ is linearly independent, the only solution to this equation is $a_{1}-a_{1}^{\prime}=0, \ldots, a_{m}-a_{m}^{\prime}=0$, or equivalently $a_{1}=a_{1}^{\prime}, \ldots, a_{m}=a_{m}^{\prime}$.
(" \Longleftarrow ") Now assume that, for every $v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, there are unique $a_{1}, \ldots, a_{m} \in \mathbb{F}$ such that

$$
v=a_{1} v_{1}+\cdots+a_{m} v_{m} .
$$

This implies, in particular, that the only way the zero vector $v=0$ can be written as a linear combination of v_{1}, \ldots, v_{m} is with $a_{1}=\cdots=a_{m}=0$. This shows that $\left(v_{1}, \ldots, v_{m}\right)$ are linearly independent.

Linear Dependence Lemma

If $\left(v_{1}, \cdots, v_{m}\right)$ is linearly dependent and $v_{1} \neq 0$, then there exists $j \in\{2, \cdots, m\}$ such that the following two conditions hold.

1. $v_{j} \in \operatorname{span}\left(v_{1}, \cdots, v_{j-1}\right)$.
2. If v_{j} is removed from $\left(v_{1}, \cdots, v_{m}\right)$, then $\operatorname{span}\left(v_{1}, \cdots, \hat{v}_{j}, \cdots, v_{m}\right)=\operatorname{span}\left(v_{1}, \cdots, v_{m}\right)$.

Proof. Since $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent there exist $a_{1}, \ldots, a_{m} \in \mathbb{F}$ not all zero such that $a_{1} v_{1}+\cdots+a_{m} v_{m}=0$. Since by assumption $v_{1} \neq 0$, not all of a_{2}, \ldots, a_{m} can be zero. Let $j \in\{2, \ldots, m\}$ be largest such that $a_{j} \neq 0$. Then we have

$$
\begin{equation*}
v_{j}=-\frac{a_{1}}{a_{j}} v_{1}-\cdots-\frac{a_{j-1}}{a_{j}} v_{j-1}, \tag{5.1}
\end{equation*}
$$

which implies Part 1.
Let $v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. This means, by definition, that there exist scalars $b_{1}, \ldots, b_{m} \in \mathbb{F}$ such that

$$
v=b_{1} v_{1}+\cdots+b_{m} v_{m} .
$$

The vector v_{j} that we determined in Part 1 can be replaced by Equation (5.1) so that v is written as a linear combination of $\left(v_{1}, \ldots, \hat{v}_{j}, \ldots, v_{m}\right)$. Hence, $\operatorname{span}\left(v_{1}, \ldots, \hat{v}_{j}, \ldots, v_{m}\right)=$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$.

Let $\left(v_{1}, \cdots, v_{m}\right)$ be a linearly independent list of vectors that spans V, and let $\left(w_{1}, \cdots, w_{n}\right)$ be any list that spans V. Then $m \leq n$.

Proof. The proof uses the following iterative procedure: start with an arbitrary list of vectors $\mathcal{S}_{0}=\left(w_{1}, \ldots, w_{n}\right)$ such that $V=\operatorname{span}\left(\mathcal{S}_{0}\right)$. At the $k^{\text {th }}$ step of the procedure, we construct a new list \mathcal{S}_{k} by replacing some vector $w_{j_{k}}$ by the vector v_{k} such that \mathcal{S}_{k} still spans V. Repeating this for all v_{k} then produces a new list \mathcal{S}_{m} of length n that contains each of v_{1}, \ldots, v_{m}, which then proves that $m \leq n$. Let us now discuss each step in this procedure in detail.

Step 1. Since $\left(w_{1}, \ldots, w_{n}\right)$ spans V, adding a new vector to the list makes the new list linearly dependent. Hence $\left(v_{1}, w_{1}, \ldots, w_{n}\right)$ is linearly dependent. By Lemma 5.2.7, there exists an index j_{1} such that

$$
w_{j_{1}} \in \operatorname{span}\left(v_{1}, w_{1}, \ldots, w_{j_{1}-1}\right) .
$$

Hence $\mathcal{S}_{1}=\left(v_{1}, w_{1}, \ldots, \hat{w}_{j_{1}}, \ldots, w_{n}\right)$ spans V. In this step, we added the vector v_{1} and removed the vector $w_{j_{1}}$ from \mathcal{S}_{0}.

Step k. Suppose that we already added v_{1}, \ldots, v_{k-1} to our spanning list and removed the vectors $w_{j_{1}}, \ldots, w_{j_{k-1}}$ in return. Call this list \mathcal{S}_{k-1}, and note that $V=\operatorname{span}\left(\mathcal{S}_{k-1}\right)$. Add the vector v_{k} to \mathcal{S}_{k-1}. By the same arguments as before, adjoining the extra vector v_{k} to the spanning list \mathcal{S}_{k-1} yields a list of linearly dependent vectors. Hence, by Lemma 5.2.7, there exists an index j_{k} such that \mathcal{S}_{k-1} with v_{k} added and $w_{j_{k}}$ removed still spans V. The fact that $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent ensures that the vector removed is indeed among the w_{j}. Call the new list \mathcal{S}_{k}, and note that $V=\operatorname{span}\left(\mathcal{S}_{k}\right)$.

The final list \mathcal{S}_{m} is \mathcal{S}_{0} but with each v_{1}, \ldots, v_{m} added and each $w_{j_{1}}, \ldots, w_{j_{m}}$ removed. Moreover, note that \mathcal{S}_{m} has length n and still spans V. It follows that $m \leq n$.

Basis Reduction Theorem

If $V=\operatorname{span}\left(v_{1}, \cdots, v_{m}\right)$, then either $\left(v_{1}, \cdots, v_{m}\right)$ is a basis of V or some v_{i} can be removed to obtain a basis of V.

Proof. Suppose $V=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. We start with the list $\mathcal{S}=\left(v_{1}, \ldots, v_{m}\right)$ and iteratively run through all vectors v_{k} for $k=1,2, \ldots, m$ to determine whether to keep or remove them from \mathcal{S} :

Step 1. If $v_{1}=0$, then remove v_{1} from \mathcal{S}. Otherwise, leave \mathcal{S} unchanged.
Step k. If $v_{k} \in \operatorname{span}\left(v_{1}, \ldots, v_{k-1}\right)$, then remove v_{k} from \mathcal{S}. Otherwise, leave \mathcal{S} unchanged.
The final list \mathcal{S} still spans V since, at each step, a vector was only discarded if it was already in the span of the previous vectors. The process also ensures that no vector is in the span of the previous vectors. Hence, by the Linear Dependence Lemma 5.2.7 the final list \mathcal{S} is linearly independent. It follows that \mathcal{S} is a basis of V.

Basis Extension Theorem
 Every linearly independent list of vectors in a finite-dimensional vector space V can be extended to a basis of V.

Proof. Suppose V is finite-dimensional and that $\left(v_{1}, \ldots, v_{m}\right)$ is linearly independent. Since V is finite-dimensional, there exists a list $\left(w_{1}, \ldots, w_{n}\right)$ of vectors that spans V. We wish to adjoin some of the w_{k} to $\left(v_{1}, \ldots, v_{m}\right)$ in order to create a basis of V.

Step 1. If $w_{1} \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, then let $\mathcal{S}=\left(v_{1}, \ldots, v_{m}\right)$. Otherwise, $\mathcal{S}=\left(v_{1}, \ldots, v_{m}, w_{1}\right)$.
Step k. If $w_{k} \in \operatorname{span}(\mathcal{S})$, then leave \mathcal{S} unchanged. Otherwise, adjoin w_{k} to \mathcal{S}.
After each step, the list \mathcal{S} is still linearly independent since we only adjoined w_{k} if w_{k} was not in the span of the previous vectors. After n steps, $w_{k} \in \operatorname{span}(\mathcal{S})$ for all $k=1,2, \ldots, n$. Since $\left(w_{1}, \ldots, w_{n}\right)$ was a spanning list, \mathcal{S} spans V so that \mathcal{S} is indeed a basis of V.

Pb 1.2.16

Let V denote the set of all $m \times n$ matrices with real entries; so V is a vector space over \mathbb{R} by Example 2. Let F be the field of rational numbers. Is V a vector space over F with the usual definitions of matrix addition and scalar multiplication?

- The sum of two matrices with real entries is a matrix with real entries
- The product of a matrix with real entries by a rational number is a matrix with real entries
- (VS 1-4) are independent of the choice of field, so they still hold when the field is Q
$-(\mathrm{VS} 5): 1 \in Q$ and for a matrix $M \in \mathrm{~V}, 1 M=M$
- (VS 6-8) hold because $Q \subset R$, so elements in Q share all additive and multiplicative properties of elements in R
Thus V is a vector space.

Pb 1.3.23

Let W_{1} and W_{2} be subspaces of a vector space V.
a. Prove that $W_{1}+W_{2}$ is a subspace of V that contains both W_{1} and W_{2}.
b. Prove that any subspace of V that contains both W_{1} and W_{2} must also contain $W_{1}+W_{2}$.
(a) $\mathrm{W}_{1}+\mathrm{W}_{2}$ is a subspace of W : Closed under vector addition, because if $u, v \in \mathrm{~W}_{1}+\mathrm{W}_{2}$, then there exist $u_{1}, v_{1} \in \mathrm{~W}_{1}$ and $u_{2}, v_{2} \in \mathrm{~W}_{2}$ such that $u=u_{1}+u_{2}$ and $v=v_{1}+v_{2}$, and then $u+v=u_{1}+u_{2}+v_{1}+v_{2}=\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right) \in \mathrm{W}_{1}+\mathrm{W}_{2}$. For scalar multiplication, $a u=a\left(u_{1}+u_{2}\right)=a u_{1}+a u_{2} \in \mathrm{~W}_{1}+\mathrm{W}_{2}$. Finally, $\mathrm{W}_{1}+\mathrm{W}_{2}$ contains 0 since both W_{1}, W_{2} are subspaces and therefore contain 0 .
$\mathrm{W}_{1}+\mathrm{W}_{2}$ contains both W_{1} and W_{2} : Every vector in $\mathrm{W}_{1}+\mathrm{W}_{2}$ has the form $x+y$ with $x \in \mathrm{~W}_{1}, y \in \mathrm{~W}_{2}$. Set $y=0$ to obtain all vectors in W_{1} and $x=0$ to obtain all vectors in W_{2}. That is, any vector $x \in \mathrm{~W}_{1}$ or $y \in \mathrm{~W}_{2}$ is also present in $\mathrm{W}_{1}+\mathrm{W}_{2}$.
(b) A subspace W of V that contains both W_{1} and W_{2} must also contain all vectors of the form $x+y$ with $x \in \mathbf{W}_{1}, y \in \mathrm{~W}_{2}$, since it is closed under addition. Therefore it contains $\mathrm{W}_{1}+\mathrm{W}_{2}$.

Pb 1.4.12

Show that a subset W of a vector space V is a subspace of V if and only if $\boldsymbol{\operatorname { s p a n }}(W)=W$.

If W is a subspace of V , then it is closed under addition and scalar multiplication and contains all vectors of the form $v=a_{1} u_{1}+\cdots a_{n} u_{n}$ with $u_{1}, \ldots, u_{n} \in \mathrm{~W}$. But span(W) consists of linear combinations of vectors in W, so span $(W) \subset W$. Moreover, clearly each vector in W is also in $\operatorname{span}(\mathrm{W})$, so $\mathrm{W} \subset \operatorname{span}(\mathrm{W})$. Therefore $\operatorname{span}(\mathrm{W})=\mathrm{W}$.
If $\operatorname{span}(\mathrm{W})=\mathrm{W}$, then all linear combinations $v=a_{1} u_{1}+\cdots a_{n} u_{n}$ with $u_{1}, \ldots, u_{n} \in \mathrm{~W}$ are in W . Hence W is closed under addition and scalar multiplication, and it contains 0 . Therefore W is a vector space.

Pb 1.5.18

Let S be a set of nonzero polynomials in $P(F)$ such that no two have the same degree. Prove that S is linearly independent.

We argue by contradiction: Suppose that S is linearly dependent. Then there exist a finite number of distinct polynomials $p_{1}, p_{2}, \ldots, p_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that

$$
a_{1} p_{1}+a_{2} p_{2}+\cdots a_{n} p_{n}=0
$$

Consider the polynomial p_{j} of highest degree such that $a_{j} \neq 0$. If its degree is k, then there is a non-vanishing x^{k} term in the left-hand side, since each other polynomial p_{i} with nonzero coefficient a_{i} has degree less than k. But the left-hand side has to equal the zero polynomial, a contradiction. Thus S is linearly independent.

Pb 1.6.14

Find base for the following subspaces of F^{5} :

$$
W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in F^{5} \mid a_{1}-a_{3}-a_{4}=0\right\}
$$

and

$$
W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in F^{5} \mid a_{2}=a_{3}=a_{4} \text { and } a_{1}+a_{5}=0\right\} .
$$

A basis for W_{1} is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\{(1,0,1,0,0),(1,0,0,1,0),(0,1,0,0,0),(0,0,0,0,1)\}$, and the dimension of W_{1} is 4 . The vectors are clearly a subset of W_{1}, linearly independent, and they span W_{1} since any vector $x \in \mathrm{~W}_{1}$ can be written $x=(a+b, c, a, b, d)=a v_{1}+b v_{2}+c v_{3}+d v_{4}$. A basis for W_{2} is $\left\{v_{1}, v_{2}\right\}=\{(0,1,1,1,0),(1,0,0,0,-1)\}$, and the dimension of W_{2} is 2 . The vectors are clearly a subset of W_{2}, linearly independent, and they span W_{2} since any vector $x \in \mathrm{~W}_{2}$ can be written $x=(b, a, a, a,-b)=a v_{1}+b v_{2}$.

Pb 1.6.33(a)

a. Let W_{1} and W_{2} be subspaces of a vector space V such that $V=W_{1} \oplus W_{2}$. If β_{1} and β_{2} are bases for W_{1} and W_{2}, respectively, show that $\beta_{1} \cap \beta_{2}=\emptyset$ and $\beta_{1} \cup \beta_{2}$ is a basis for V.
(a) Since $\mathrm{V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$, we have $\mathrm{W}_{1} \cap \mathrm{~W}_{2}=\{0\}$. Let $\beta_{1}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\beta_{2}=$ $\left\{w_{1}, \ldots, w_{n}\right\}$. Note that the basis vectors $v_{1}, \ldots, v_{m} \in \mathrm{~W}_{1}$ and $w_{1}, \ldots, w_{n} \in \mathrm{~W}_{2}$ are all nonzero, since they are linearly independent. Thus $\beta_{1} \cap \beta_{2}=\varnothing$.
Next, consider $\beta=\beta_{1} \cup \beta_{2}=\left\{v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\}$. The vectors of β are linearly independent, since if $\left(a_{1} v_{1}+\cdots a_{n} v_{n}\right)+\left(b_{1} w_{1}+\cdots+b_{m} w_{m}\right)=0$, the first vector is in W_{1} and the second in W_{2} so $a_{1} v_{1}+\cdots a_{n} v_{n}=b_{1} w_{1}+\cdots+b_{m} w_{m}=0$. Since β_{1}, β_{2} are bases, this gives $a_{1}=\cdots=a_{n}=0$ and $b_{1}=\cdots=b_{m}=0$. The vectors of β also span V, since $\mathrm{V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$ means that each vector $v \in \mathrm{~V}$ can be written as $v=x+y$ with $x \in \mathrm{~W}_{1}$ and $y \in \mathrm{~W}_{2}$. But β_{1}, β_{2} are bases for $\mathrm{W}_{1}, \mathrm{~W}_{2}$, so $v=x+y=a_{1} v_{1}+\cdots a_{n} v_{n}+b_{1} w_{1}+\cdots+b_{m} w_{m}$ for some coefficients a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}. Thus $\beta_{1} \cup \beta_{2}$ is a basis for V .

Pb 1.6.33(b)

b. Conversely, Let β_{1} and β_{2} be disjoint bases for subspaces W_{1} and W_{2}, respectively, of a vector space V. Prove that if $\beta_{1} \cup \beta_{2}$ is a basis for V, then $V=W_{1} \oplus W_{2}$.
(b) Let $\beta_{1}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\beta_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$. Since $\beta=\beta_{1} \cup \beta_{2}$ is a basis for V , each vector $v \in \mathrm{~V}$ can be written $v=\left(a_{1} v_{1}+\cdots+a_{m} v_{m}\right)+\left(b_{1} w_{1}+\cdots+b_{m} w_{m}\right)=x+y$, where $x \in \mathrm{~W}_{1}$ and $y \in \mathrm{~W}_{2}$. Also, a vector $v \in \mathrm{~W}_{1} \cap \mathrm{~W}_{2}$ can be written in the two ways $v=a_{1} v_{1}+\cdots+a_{m} v_{m}=b_{1} w_{1}+\cdots+b_{n} w_{n}$, but this means $a_{1} v_{1}+\cdots+a_{m} v_{m}+$ $\left(-b_{1}\right) w_{1}+\cdots+\left(-b_{n}\right) w_{n}=0$ and since β is a basis, we have $a_{1}=\cdots=a_{m}=0$ and $b_{1}=\cdots=b_{n}=0$. Therefore, $v=0$ so $\mathrm{W}_{1} \cap \mathrm{~W}_{2}=\{0\}$, and $\mathrm{V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$.

