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Every vector space has a unique additive identity.

Proof. Suppose there are two additive identities 0 and /. Then

)
0'=0+0=0,

where the first equality holds since 0 is an identity and the second equality holds since 0’ is
an identity. Hence 0 = (/, proving that the additive identity is unique.
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Every v € V has a unique additive inverse.

Proof. Suppose w and w'’ are additive inverses of v so that v + w = 0 and v + w’ = 0. Then

Hence w = w', as desired.

w=w+0=w+@w+v)=(w+v)+w =0+wv =w'.
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Ov=0forallveV.
Proof. For v € V| we have by distributivity that

0v = (04 0)v = 0v + Ov.
Adding the additive inverse of Qv to both sides, we obtain

0=0v—0v=(0v+0v)—0v=0v
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a0 =0 forall a e F. }

a0 = a(0 +0) = a0 + a0.

Adding the additive inverse of a0 to both sides, we obtain 0 = a0, as desired. |
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(=1)v = —v for every v € V.
Proof. For v € V, we have

v+ (-1l =1v+ (-1)v = (1+(-1))
which shows that (—1)v is the additive inverse —v of v.

=0v =0,

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra




The list of vectors (v1,-- -, V) is linearly independent if and only
if every v € span(vy,- -, Vi) can be uniquely written as a linear
combination of (vi,---, vp).

(“=") Assume that (vy,...,v,,) is a linearly independent list of vectors. Suppose there are

two ways of writing v € span(vy, ..., v,,) as a linear combination of the v;:

V= av + - AUy,

v =a\v; + - A, Un.
Subtracting the two equations yields 0 = (a; — a})vy + -+ - + (am — @, )V, Since (vy, ..., Up)
is linearly independent, the only solution to this equation is a; —a} = 0,...,a, —a,, =0,
or equivalently a; = df, ..., a,, = a,.
(“<=") Now assume that, for every v € span(vy,...,vy,), there are unique ay,...,a, € F
such that

V=aiU) + -+ AUy,

This implies, in particular, that the only way the zero vector v = 0 can be written as a
linear combination of vy, ..., vy, is with a; = - -+ = a,, = 0. This shows that (vy,...,v,,) are 'H
linearly independent. O
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Review

Linear Dependence Lemma

If (vi,-+,Vm) is linearly dependent and v; # 0, then there exists
J €{2,---, m} such that the following two conditions hold.

1. vj € span(vy, - -, Vvj_1).
2. If v; is removed from (vi,- -+ , Vi), then
span(vl, Ty ‘,}j’ Ty Vm) = Span(vlv Ty Vm)-

v
Proof. Since (vy,...,v,,) is linearly dependent there exist ay,...,a, € F not all zero such
that ajvr + -+ + amvy, = 0. Since by assumption v # 0, not all of as, ..., a,, can be zero.
Let j € {2,...,m} be largest such that a; # 0. Then we have
aq aj—1
PP A . P (5.1)
aj a;
which implies Part 1.
Let v € span(vy, ..., vs,). This means, by definition, that there exist scalars by, ..., b, € F
such that
v ="bvy + - + by
The vector v; that we determined in Part 1 can be replaced by Equation (5.1) so that v 'H
is written as a linear combination of (vy,...,0;,...,v,,). Hence, span(vy,...,0;,...,0,) =
span(vy, . .., Up). O
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Let (vi,- -, vm) be a linearly independent list of vectors that spans
V , and let (wy,---,wy) be any list that spans V. Then m < n.

Proof. The proof uses the following iterative procedure: start with an arbitrary list of vectors
So = (wy, ..., w,) such that V = span(S;). At the k' step of the procedure, we construct
a new list S, by replacing some vector wj, by the vector v such that Sy, still spans V.

Repeating this for all v, then produces a new list S, of length n that contains each of

V1, ..., Um, which then proves that m < n. Let us now discuss each step in this procedure in
detail.
Step 1. Since (wy,...,wy,) spans V, adding a new vector to the list makes the new list

linearly dependent. Hence (vi,wr,...,w,) is linearly dependent. By Lemma [5.2.7] there
exists an index j; such that

wj, € span(vy,wy, ..., Wj_1).

Hence & = (vi,wy,...,Wj,...,w,) spans V. In this step, we added the vector v; and
removed the vector w;, from Sp.

L
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Step k. Suppose that we already added vy, ..., vp_; to our spanning list and removed the
vectors wj,, ..., wj, , in return. Call this list Sy_;, and note that V = span(S;_;). Add the
vector v to Sp—1. By the same arguments as before, adjoining the extra vector vy to the
spanning list S,_; yields a list of linearly dependent vectors. Hence, by Lemma [5.2.7] there

exists an index jj, such that S, with v, added and wj, removed still spans V. The fact

that (v1,...,v,) is linearly independent ensures that the vector removed is indeed among
the w;. Call the new list Sy, and note that V' = span(Sk).

The final list S,,, is Sp but with each vy, ..., v, added and each wj,,...,w;, removed.
Moreover, note that S, has length n and still spans V. It follows that m < n. m|

Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra



Basis Reduction Theorem

If V =span(vi,---,Vp), then either (vi,--- ,vp) is a basis of V
or some v; can be removed to obtain a basis of V.

Proof. Suppose V = span(v1, ..., v,). We start with the list S = (v, ..., v,,) and iteratively
run through all vectors v, for k =1,2,...,m to determine whether to keep or remove them

from S:
Step 1. If v; = 0, then remove v; from S. Otherwise, leave S unchanged.
Step k. If v, € span(vy, ..., vk_1), then remove vy, from S. Otherwise, leave S unchanged.

The final list S still spans V' since, at each step, a vector was only discarded if it was already
in the span of the previous vectors. The process also ensures that no vector is in the span
of the previous vectors. Hence, by the Linear Dependence Lemma [5.2.7] the final list S is
linearly independent. It follows that S is a basis of V. O
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Basis Extension Theorem

Every linearly independent list of vectors in a finite-dimensional
vector space V can be extended to a basis of V.

Proof. Suppose V' is finite-dimensional and that (vy,...,vy,,) is linearly independent. Since
V is finite-dimensional, there exists a list (wy, ..., w,) of vectors that spans V. We wish to
adjoin some of the wy, to (vq,...,v,,) in order to create a basis of V.

Step 1. If wy € span(vy,...,v,,), thenlet S = (vy,...,v,,). Otherwise, § = (v1,. .., Uy, w1).
Step k. If wy, € span(S), then leave S unchanged. Otherwise, adjoin wy, to S.

After each step, the list S is still linearly independent since we only adjoined wy, if w;, was

not in the span of the previous vectors. After n steps, wy € span(S) for all k =1,2,...,n.

Since (wy, ..., w,) was a spanning list, S spans V' so that S is indeed a basis of V. |
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Solution

Let V denote the set of all m x n matrices with real entries; so V
is a vector space over R by Example 2. Let F be the field of
rational numbers. Is V a vector space over F with the usual
definitions of matrix addition and scalar multiplication?

— The sum of two matrices with real entries is a matrix with real entries

— The product of a matrix with real entries by a rational number is a matrix with real
entries

— (VS 1-4) are independent of the choice of field, so they still hold when the field is Q
— (VS 5): 1€ Q and for a matrix M € V, 1M = M

— (VS 6-8) hold because Q C R, so elements in @ share all additive and multiplicative
properties of elements in R

Thus V is a vector space.
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v Solution

Pb 1.3.23
Let Wi and W5 be subspaces of a vector space V.

a. Prove that W; 4+ W5 is a subspace of V that contains both
Wi and Ws.

b. Prove that any subspace of V that contains both W and W5,
must also contain Wj + Wh.

(a) Wi + Wy is a subspace of W: Closed under vector addition, because if u,v € Wy + Wy,
then there exist uy,v; € Wy and ug, vy € Wy such that v = u; + ug and v = vy + vg,
and then u+v = ui + ug + v1 + v2 = (w1 + v1) + (u2 + v2) € Wi + Wa. For scalar
multiplication, au = a(u; + u2) = au; + aug € Wi + Wa. Finally, W; + Wy contains 0
since both W1, Wy are subspaces and therefore contain 0.

W; + W2 contains both W; and Ws: Every vector in Wy + Wa has the form z + y with
z € Wy, y € Wy, Set y = 0 to obtain all vectors in W; and = = 0 to obtain all vectors
in Waq. That is, any vector z € W; or y € Wy is also present in Wy + Wa.

(b) A subspace W of V that contains both W; and Wy must also contain all vectors of the
form z +y with x € Wy, y € Wy, since it is closed under addition. Therefore it contains
Wi + Ws.
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Show that a subset W of a vector space V is a subspace of V if
and only if span(W) = W.

If W is a subspace of V, then it is closed under addition and scalar multiplication and contains
all vectors of the form v = aju; + - - - apuy with ug,...,u, € W. But span(W) consists of
linear combinations of vectors in W, so span(W) C W. Moreover, clearly each vector in W is
also in span(W), so W C span(W). Therefore span(W) = W.

If span(W) = W, then all linear combinations v = ajuy + - - - apuy, with uy, ..., u, € W are in
W. Hence W is closed under addition and scalar multiplication, and it contains 0. Therefore
W is a vector space.
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Pb 1.5.18

Let S be a set of nonzero polynomials in P(F) such that no two
have the same degree. Prove that S is linearly independent.

We argue by contradiction: Suppose that S is linearly dependent. Then there exist a finite
number of distinct polynomials p1, pa, ..., p, in S and scalars ay, ag, . . ., an, not all zero, such
that

a1p1 + agp2 + -+ - anpn = 0.

Consider the polynomial p; of highest degree such that a; # 0. If its degree is k, then there
is a non-vanishing * term in the left-hand side, since each other polynomial p; with nonzero
coefficient a; has degree less than k. But the left-hand side has to equal the zero polynomial,
a contradiction. Thus S is linearly independent.
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Pb 1.6.14

Find base for the following subspaces of F>:

Wi = {(a1, a2, a3, a4, a5) € F° | a1 — a3 — as = 0}

and

W, = {(31,82,33,84,35) & F> | a» = a3z = ag and a; + a5 = 0} )

A basis for Wy is {v1,v2,vs,04} = {(1,0,1,0,0), (1,0,0,1,0), (0,1,0,0,0), (0,0,0,0,1)}, and
the dimension of W; is 4. The vectors are clearly a subset of Wy, linearly independent, and
they span W since any vector z € W; can be written z = (a+b, ¢, a, b, d) = avi+bva+cvs+duvg.
A basis for Wy is {v1,v2} = {(0,1,1,1,0),(1,0,0,0,—1)}, and the dimension of W3 is 2. The

vectors are clearly a subset of Wy, linearly independent, and they span W5 since any vector
z € Wa can be written z = (b,a,a,a, —b) = avy + bug.
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Solution

Pb 1.6.33(a)

a. Let Wy and W, be subspaces of a vector space V such that
V=W & W,. If 1 and 3, are bases for Wj and W5,
respectively, show that 81 N B> = () and 31 U B35 is a basis for
V.

(a) Since V. = W; @ Wq, we have Wy N Wz = {0}. Let 81 = {v1,...,vm} and B2 =

{w1,...,wn}. Note that the basis vectors vi,..., v, € Wy and wi,...,w, € Wa are all
nonzero, since they are linearly independent. Thus 81 N B2 = @.
Next, consider 8 = 81 U B2 = {v1,...,Um,w1,...,wn}. The vectors of B are linearly
independent, since if (a1v1+- - - apvp) + (brwi + - - - + bpwm,) = 0, the first vector is in Wy
and the second in Wy 80 a1v1 +- - - anvyp = biwi +- - - +bpwm = 0. Since f1, P2 are bases,
this gives a1 = --- =a, =0 and by = --- = by, = 0. The vectors of § also span V, since
V = W; ®Ws; means that each vector v € V can be written as v = z+y with x € W; and
y € Wa. But 81, B2 are bases for Wi, Wy, so v = z+y = a1v1+- - - apvp+biwi+- - -+bpmwm,
for some coefficients a1, ...,a, and by, ..., bn. Thus B1 U Bg is a basis for V.
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Pb 1.6.33(b)

b. Conversely, Let 81 and (3> be disjoint bases for subspaces W;
and W, respectively, of a vector space V. Prove that if
B1 U B> is a basis for V, then V = W; & W,.

(b) Let 81 = {v1,...,vm} and By = {w1,...,w,}. Since B = B1 U Bs is a basis for V, each
vector v € V can be written v = (a1v1 + - -+ + amUm) + (brwi + -+ + bpwy) = = + v,
where z € W and y € Wa. Also, a vector v € W1 N Wz can be written in the two
ways v = a101 + -+ - + GmUm = bywy + - - - + bpwy,, but this means a1v; + -+ + Aymvm +
(=b1)wi + -+ + (=bp)wy, = 0 and since B is a basis, we have a1 = -+ = @, = 0 and
by =--+ = b, = 0. Therefore, v = 0 so W1y NWq = {0}, and V = W; & Ws.
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