Math 4377/6308 Advanced Linear Algebra Chapter 2 Review and Solution to Problems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

Pb 2.1.15

Recall the definition of $P(\mathbb{R})$ on page 10. Define

Solution

$$T: P(\mathbb{R}) o P(\mathbb{R}) \quad ext{by} \quad T(f(x)) = \int_0^x f(t) dt.$$

Prove that T is linear and one-to-one, but not onto.

T is linear, since with $f, g \in \mathsf{P}(R)$ and $c \in R$:

$$T(cf+g) = \int_0^x (cf(t) + g(t)) \, dt = c \int_0^x f(t) \, dt + \int_0^x g(t) \, dt = cT(f) + T(g).$$

T is one-to-one, since if $T(f) = \theta$, differentiation of both sides gives $f = \theta$ so the null-space is trivial. T is not onto, since all polynomials T(f) are zero at x = 0, and can therefore not be equal to any polynomial with a nonzero constant term.

(日) (同) (三) (三)

Pb 2.1.35(a)

Let V be a finite-dimensional vector space and $T: V \rightarrow V$ be linear.

(a) Suppose that
$$V = R(T) + N(T)$$
. Prove that $V = R(T) \oplus N(T)$.

Be careful to say in each part where finite-dimensionality is used.

(a) Suppose V=R(T)+N(T). Let β, γ be bases for R(T),N(T), so V = span($\{\beta \cup \gamma\}$). By the dimension theorem (using finite-dimensionality), dim(N(T)) + dim(R(T)) = dim(V), so there are exactly dim(V) vectors in $\beta \cup \gamma$. By Corollary 2 to the Replacement Theorem, $\beta \cup \gamma$ is then a basis for V, which means that the vectors are linearly independent and R(T) \cap N(T) = {0}, that is, V=R(T) \oplus N(T).

(日) (同) (三) (三)

Solution

Pb 2.1.35(a)

(b) Suppose that $R(T) \cap N(T) = \{0\}$. Prove that $V = R(T) \oplus N(T)$.

(b) Suppose R(T)∩N(T) = {∂}. Let β, γ be bases for R(T),N(T). The set β∪γ is then linearly independent (since only the zero vector can be written as linear combinations of vectors in β or in γ). By the dimension theorem (using finite-dimensionality), dim(N(T)) + dim(R(T)) = dim(V), so there are exactly dim(V) vectors in β ∪ γ. By Corollary 2 to the Replacement Theorem, β ∪ γ is then a basis for V, so V=R(T) ⊕ N(T).

(日) (周) (三) (三)

Solution

Pb 2.2.12

Let V be a finite-dimensional vector space and T be the projection on W along W' where W and W' are subspaces of V such that $V = W \oplus W'$. (Recall that a function $T : V \to V$ is called the projection on W along W' if, for $x = x_1 + x_2$ with $x_1 \in W$ and $x_2 \in W'$, we have $T(x) = x_1$. Find an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

From the definition of projection, $V=W \oplus W'$ and for $x = x_1 + x_2$ with $x_1 \in W_1, x_2 \in W_2$, we have $T(x) = x_1$. Let $\beta_W = \{u_1, \ldots, u_k\}$ be a basis for W and $\beta = \{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ be its extension to a basis for V. Then $\{u_{k+1}, \ldots, u_n\}$ is a basis for W' (it spans because $V=W \oplus W'$, and it is linearly independent since it is a subset of another basis). Now, we have $T(u_i) = u_i$ for $i = 1, \ldots, k$ and $T(u_i) = 0$ for $i = k + 1, \ldots, n$, so

$$[\mathsf{T}]_{\beta} = \begin{pmatrix} 1 & & & \\ & \ddots & & & \\ & & 1 & & \\ & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

イロト 不得下 イヨト イヨト

Pb 2.3.17

Let V be a vector space. Determine all linear transformations $T: V \to V$ such that $T = T^2$. Hint: Note that x = T(x) + (x - T(x)) for every $x \in V$, and show that $V = \{y: T(y) = y\} \oplus N(T)$ (see the exercises of Section 1.3).

For any $x \in V$, we have x = T(x) + (x - T(x)). Here, $T(x) \in R(T)$ and $x - T(x) \in N(T)$, since

$$\mathsf{T}(x - \mathsf{T}(x)) = \mathsf{T}(x) - \mathsf{T}^2(x) = \mathsf{T}(x) - \mathsf{T}(x) = \theta.$$

This gives V=R(T)+N(T), and by exercise 2.1.35 (a), $V=R(T) \oplus N(T)$. By exercise 2.1.26, then $V = \{y : T(y) = y\} \oplus N(T)$.

This characterizes all maps T such that $T^2 = T$, since for any direct sum $V = V_1 \oplus V_2$, the transformation $T(v) = v_1$ where $v = v_1 + v_2, v_1 \in V_1, v_2 \in V_2$ satisfies $T^2 = T$, acts as the identity on its range V_1 , and has the null space V_2 .

イロト 不得下 イヨト イヨト 二日

Pb 2.4.17(a)

Let V and W be finite-dimensional vector spaces and $T : V \rightarrow W$ be an isomorphism. Let V_0 be a subspace of V.

(a) Prove that $T(V_0)$ is a subspace of W.

(a) $T(V_0)$ contains θ_W , since $\theta_V \in V_0$ and $T(\theta_V) = \theta_W$. Let $u_1, u_2 \in T(V_0)$, then there exist $v_1, v_2 \in V_0$ such that $T(v_1) = u_1$ and $T(v_2) = u_2$. But then $v_1 + v_2 \in V_0$ and $T(v_1 + v_2) = T(v_1) + T(v_2) = u_1 + u_2 \in T(V_0)$. Similarly for scalar multiplication, showing that $T(V_0)$ is a subspace of W.

(日) (周) (三) (三)

Pb 2.4.17(b)

(b) Prove that $\dim(V_0) = \dim(T(V_0))$.

(b) Let $\beta = \{u_1, \ldots, u_n\}$ be a basis for V_0 . $T(\beta)$ is then a basis for $T(V_0)$, since it spans $T(V_0)$ and its vectors are linearly independent:

$$a_1\mathsf{T}(u_1) + \dots + a_n\mathsf{T}(u_n) = \mathsf{T}(a_1u_1 + \dots + a_nu_n) = 0$$

gives $a_1u_1 + \cdots + a_nu_n = 0$ since T is an isomorphism, and $a_1 = \cdots = a_n = 0$ since β is a basis for V₀. Thus, $n = \dim(V_0) = \dim(\mathsf{T}(V_0))$.

(日) (周) (三) (三)

Pb 2.5.8

Prove the following generalization of Theorem 2.33. Let $T: V \to W$ be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β' be ordered bases for V, and let γ and γ' be ordered bases for W. Then $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$, where Q is the matrix that changes β' -coordinates into β -coordinates and P is the matrix that changes γ' -coordinates into γ -coordinates.

We have
$$Q = [\mathsf{I}_{\mathsf{V}}]^{\beta}_{\beta'}$$
 and $P = [\mathsf{I}_{\mathsf{W}}]^{\gamma}_{\gamma'}$. Then $\mathsf{T} = \mathsf{I}_{\mathsf{W}}\mathsf{T} = \mathsf{T}_{\mathsf{V}}$ and

$$P[\mathsf{T}]^{\gamma'}_{\beta'} = [\mathsf{I}_{\mathsf{W}}]^{\gamma}_{\gamma'}[\mathsf{T}]^{\gamma'}_{\beta'} = [\mathsf{I}_{\mathsf{W}}\mathsf{T}]^{\gamma}_{\beta'} = [\mathsf{T}_{\mathsf{V}}]^{\gamma}_{\beta'} = [\mathsf{T}]^{\gamma}_{\beta}[\mathsf{I}_{\mathsf{V}}]^{\beta}_{\beta'} = [\mathsf{T}]^{\gamma}_{\beta}Q.$$

Therefore, $[\mathsf{T}]_{\beta'}^{\gamma'} = P^{-1}[\mathsf{T}]_{\beta}^{\gamma}Q.$

