Math 4377/6308 Advanced Linear Algebra Chapter 2 Review and Solution to Problems

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

Pb 2.1.15

Recall the definition of $P(\mathbb{R})$ on page 10 . Define

$$
T: P(\mathbb{R}) \rightarrow P(\mathbb{R}) \quad \text { by } \quad T(f(x))=\int_{0}^{x} f(t) d t
$$

Prove that T is linear and one-to-one, but not onto.

T is linear, since with $f, g \in \mathrm{P}(R)$ and $c \in R$:

$$
T(c f+g)=\int_{0}^{x}(c f(t)+g(t)) d t=c \int_{0}^{x} f(t) d t+\int_{0}^{x} g(t) d t=c T(f)+T(g)
$$

T is one-to-one, since if $\mathrm{T}(f)=0$, differentiation of both sides gives $f=0$ so the null-space is trivial. T is not onto, since all polynomials $\mathrm{T}(f)$ are zero at $x=0$, and can therefore not be equal to any polynomial with a nonzero constant term.

Pb 2.1.35(a)

Let V be a finite-dimensional vector space and $T: V \rightarrow V$ be linear.
(a) Suppose that $V=R(T)+N(T)$. Prove that $V=R(T) \oplus N(T)$.
Be careful to say in each part where finite-dimensionality is used.
(a) Suppose $\mathrm{V}=\mathrm{R}(\mathrm{T})+\mathrm{N}(\mathrm{T})$. Let β, γ be bases for $\mathrm{R}(\mathrm{T}), \mathrm{N}(\mathrm{T})$, so $\mathrm{V}=\operatorname{span}(\{\beta \cup \gamma\})$. By the dimension theorem (using finite-dimensionality), $\operatorname{dim}(N(T))+\operatorname{dim}(R(T))=\operatorname{dim}(V)$, so there are exactly $\operatorname{dim}(\mathrm{V})$ vectors in $\beta \cup \gamma$. By Corollary 2 to the Replacement Theorem, $\beta \cup \gamma$ is then a basis for V , which means that the vectors are linearly independent and $R(T) \cap N(T)=\{0\}$, that is, $V=R(T) \oplus N(T)$.

Pb 2.1.35(a)

(b) Suppose that $R(T) \cap N(T)=\{0\}$. Prove that $V=R(T) \oplus N(T)$.
(b) Suppose $\mathrm{R}(\mathrm{T}) \cap \mathrm{N}(\mathrm{T})=\{0\}$. Let β, γ be bases for $\mathrm{R}(\mathrm{T}), \mathrm{N}(\mathrm{T})$. The set $\beta \cup \gamma$ is then linearly independent (since only the zero vector can be written as linear combinations of vectors in β or in γ). By the dimension theorem (using finite-dimensionality), $\operatorname{dim}(\mathrm{N}(\mathrm{T}))+$ $\operatorname{dim}(\mathrm{R}(\mathrm{T}))=\operatorname{dim}(\mathrm{V})$, so there are exactly $\operatorname{dim}(\mathrm{V})$ vectors in $\beta \cup \gamma$. By Corollary 2 to the Replacement Theorem, $\beta \cup \gamma$ is then a basis for V , so $\mathrm{V}=\mathrm{R}(\mathrm{T}) \oplus \mathrm{N}(\mathrm{T})$.

Pb 2.2.12

Let V be a finite-dimensional vector space and T be the projection on W along W^{\prime} where W and W^{\prime} are subspaces of V such that $V=W \oplus W^{\prime}$. (Recall that a function $T: V \rightarrow V$ is called the projection on W along W^{\prime} if, for $x=x_{1}+x_{2}$ with $x_{1} \in W$ and $x_{2} \in W^{\prime}$, we have $T(x)=x_{1}$. Find an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

From the definition of projection, $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\prime}$ and for $x=x_{1}+x_{2}$ with $x_{1} \in \mathrm{~W}_{1}, x_{2} \in \mathrm{~W}_{2}$, we have $\mathrm{T}(x)=x_{1}$. Let $\beta_{\mathrm{W}}=\left\{u_{1}, \ldots, u_{k}\right\}$ be a basis for W and $\beta=\left\{u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ be its extension to a basis for V . Then $\left\{u_{k+1}, \ldots, u_{n}\right\}$ is a basis for W^{\prime} (it spans because $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\prime}$, and it is linearly independent since it is a subset of another basis). Now, we have $T\left(u_{i}\right)=u_{i}$ for $i=1, \ldots, k$ and $T\left(u_{i}\right)=0$ for $i=k+1, \ldots, n$, so

$$
[T]_{\beta}=\left(\begin{array}{llllll}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & 0
\end{array}\right)
$$

Pb 2.3.17

Let V be a vector space. Determine all linear transformations $T: V \rightarrow V$ such that $T=T^{2}$. Hint: Note that $x=T(x)+(x-T(x))$ for every $x \in V$, and show that $V=\{y: T(y)=y\} \oplus N(T)$ (see the exercises of Section 1.3).

For any $x \in \mathrm{~V}$, we have $x=\mathrm{T}(x)+(x-\mathrm{T}(x))$. Here, $\mathrm{T}(x) \in \mathrm{R}(\mathrm{T})$ and $x-\mathrm{T}(x) \in \mathrm{N}(\mathrm{T})$, since

$$
\mathrm{T}(x-\mathrm{T}(x))=\mathrm{T}(x)-\mathrm{T}^{2}(x)=\mathrm{T}(x)-\mathrm{T}(x)=0 .
$$

This gives $V=R(T)+N(T)$, and by exercise 2.1.35 (a), $V=R(T) \oplus N(T)$. By exercise 2.1.26, then $\mathrm{V}=\{y: \mathrm{T}(y)=y\} \oplus \mathbf{N}(\mathrm{T})$.
This characterizes all maps T such that $T^{2}=T$, since for any direct sum $V=V_{1} \oplus V_{2}$, the transformation $\mathrm{T}(v)=v_{1}$ where $v=v_{1}+v_{2}, v_{1} \in \mathrm{~V}_{1}, v_{2} \in \mathrm{~V}_{2}$ satisfies $\mathrm{T}^{2}=\mathrm{T}$, acts as the identity on its range V_{1}, and has the null space V_{2}.

Pb 2.4.17(a)

Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be an isomorphism. Let V_{0} be a subspace of V.
(a) Prove that $T\left(V_{0}\right)$ is a subspace of W.
(a) $\mathrm{T}\left(\mathrm{V}_{0}\right)$ contains 0_{W}, since $\Omega_{\mathrm{V}} \in \mathrm{V}_{0}$ and $\mathrm{T}\left(\sigma_{\mathrm{V}}\right)=a_{\mathrm{W}}$. Let $u_{1}, u_{2} \in \mathrm{~T}\left(\mathrm{~V}_{0}\right)$, then there exist $v_{1}, v_{2} \in \mathrm{~V}_{0}$ such that $\mathrm{T}\left(v_{1}\right)=u_{1}$ and $\mathrm{T}\left(v_{2}\right)=u_{2}$. But then $v_{1}+v_{2} \in \mathrm{~V}_{0}$ and $\mathrm{T}\left(v_{1}+v_{2}\right)=\mathrm{T}\left(v_{1}\right)+\mathrm{T}\left(v_{2}\right)=u_{1}+u_{2} \in \mathrm{~T}\left(\mathrm{~V}_{0}\right)$. Similarly for scalar multiplication, showing that $\mathrm{T}\left(\mathrm{V}_{0}\right)$ is a subspace of W .

Pb 2.4.17(b)

(b) Prove that $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.
(b) Let $\beta=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis for $\mathrm{V}_{0} . \mathrm{T}(\beta)$ is then a basis for $\mathrm{T}\left(\mathrm{V}_{0}\right)$, since it spans $\mathrm{T}\left(\mathrm{V}_{0}\right)$ and its vectors are linearly independent:

$$
a_{1} \mathrm{\top}\left(u_{1}\right)+\cdots+a_{n} \mathrm{~T}\left(u_{n}\right)=\mathrm{T}\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right)=0
$$

gives $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$ since T is an isomorphism, and $a_{1}=\cdots=a_{n}=0$ since β is a basis for V_{0}. Thus, $n=\operatorname{dim}\left(\mathrm{V}_{0}\right)=\operatorname{dim}\left(\mathrm{T}\left(\mathrm{V}_{0}\right)\right.$.

Pb 2.5.8

Prove the following generalization of Theorem 2.33. Let
$T: V \rightarrow W$ be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β^{\prime} be ordered bases for V, and let γ and γ^{\prime} be ordered bases for W. Then $[T]_{\beta^{\prime}}^{\gamma^{\prime}}=P^{-1}[T]_{\beta}^{\gamma} Q$, where Q is the matrix that changes β^{\prime}-coordinates into β-coordinates and P is the matrix that changes γ^{\prime}-coordinates into γ-coordinates.

We have $Q=\left[\mathrm{I}_{\mathrm{V}}\right]_{\beta^{\prime}}^{\beta}$ and $P=\left[\mathrm{I}_{\mathrm{W}}\right]_{\gamma^{\prime}}^{\gamma}$. Then $\mathrm{T}=\mathrm{I}_{\mathrm{W}} \mathrm{T}=\mathrm{T} \mathrm{I}_{\mathrm{V}}$ and

$$
P[\mathrm{~T}]_{\beta^{\prime}}^{\gamma^{\prime}}=[\mathrm{I} \mathrm{~W}]_{\gamma^{\prime}}^{\gamma}[\mathrm{T}]_{\beta^{\prime}}^{\gamma^{\prime}}=[\mathrm{I} \mathrm{~W} \mathrm{~T}]_{\beta^{\prime}}^{\gamma}=\left[\mathrm{T} \mathrm{I}_{\mathrm{V}}\right]_{\beta^{\prime}}^{\gamma}=[\mathrm{T}]_{\beta}^{\gamma}[\mathrm{I} \mathrm{~V}]_{\beta^{\prime}}^{\beta}=[\mathrm{T}]_{\beta}^{\gamma} Q
$$

Therefore, $[\mathrm{T}]_{\beta^{\prime}}^{\gamma^{\prime}}=P^{-1}[\mathrm{~T}]_{\beta}^{\gamma} Q$.

