Math 4377/6308 Advanced Linear Algebra Chapter 3 Review and Solution to Problems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

5pring, 2015 1 ,

Pb 3.2.14

Let T, $U: V \rightarrow W$ be linear transformations.

Solution

- (a) Prove that $R(T + U) \subseteq R(T) + R(U)$.
- (b) Prove that if W is finite-dimensional, then $rank(T + U) \le rank(T) + rank(U)$.
- (c) Deduce from (b) that $rank(A + B) \le rank(A) + rank(B)$ for any $m \times n$ matrices A and B.

(a)
$$\forall w \in R(T + U), \exists v \in V \text{ such that}$$

 $w = (T + U)(v) \stackrel{?}{=} T(v) + U(v) \in R(T) + R(U).$
(b) $\operatorname{rank}(T + U) = \dim(R(T + U)) \stackrel{?}{\leq} \dim(R(T) + R(U)) \stackrel{?}{=} \dim(R(T)) + \dim(R(U)) - \dim(R(T) \cap R(U)) \leq \dim(R(T)) + \dim(R(U)) = \operatorname{rank}(T) + \operatorname{rank}(U).$
(c) Note that $L_{A+B} \stackrel{?}{=} L_A + L_B$. Then
 $\operatorname{rank}(A + B) = \operatorname{rank}(L_{A+B}) = \operatorname{rank}(L_A + L_B) \leq \operatorname{rank}(L_A) + \operatorname{rank}(L_B) = \operatorname{rank}(A) + \operatorname{rank}(B).$

Pb 3.2.17

Prove that if *B* is a 3×1 matrix and *C* is a 1×3 matrix, then the 3×3 matrix *BC* has rank at most 1. Conversely, show that if *A* is any 3×3 matrix having rank 1, then there exists a 3×1 matrix *B* and a 1×3 matrix *C* such that A = BC.

(
$$\Rightarrow$$
) If $B = b \in F^{3 \times 1}$ and $C = c^T = (c_1, c_2, c_3) \in F^{1 \times 3}$), then
 $BC = bc^T = b(c_1, c_2, c_3) \stackrel{?}{=} (c_1 b, c_2 b, c_3 b)$, thus
range $(BC) \stackrel{?}{=} \operatorname{span}(\{b\})$ and rank $(BC) = \dim(\operatorname{span}(\{b\})) \stackrel{?}{\leq} 1$.
(\Leftarrow) If $A = (a_1, a_2, a_3) \in F^{3 \times 3}$ have rank 1, then
range $(A) \stackrel{?}{=} \operatorname{span}(\{a_1, a_2, a_3\}) \stackrel{?}{=} \operatorname{span}(\{b\})$ for some
 $b \neq 0 \in F^{3 \times 1}$, and $\exists c^T = (c_1, c_2, c_3) \in F^{1 \times 3}$ such that $a_1 = c_1 b$,
 $a_2 = c_2 b, a_3 = c_3 b$. Therefore,
 $A = (c_1 b, c_2 b, c_3 b) = b(c_1, c_2, c_3) = BC$ with $B = b$ and $C = c^T$.

Pb 3.2.19

Let A be an $m \times n$ matrix with rank m and B be an $n \times p$ matrix with rank n. Determine the rank of AB. Justify your answer.

If A is $m \times n$ with $\operatorname{rank}(A) = m$ and B is $n \times p$ with $\operatorname{rank}(B) = n$, then $L_A : F^n \to F^m$ with $R(A) = R(L_A) = L_A(F^n) \stackrel{?}{=} F^m$ and $L_B : F^p \to F^n$ with $R(B) = R(L_B) = L_B(F^p) \stackrel{?}{=} F^n$.

Note that AB is $m \times p$ and $L_{AB} : F^p \to F^m$. Therefore, $R(AB) = R(L_{AB}) = L_{AB}(F^p) \stackrel{?}{=} L_A(L_B(F^p)) \stackrel{?}{=} L_A(F^n) \stackrel{?}{=} F^m$ and $\operatorname{rank}(AB) \stackrel{?}{=} m$.

