Math 4377/6308 Advanced Linear Algebra

 Chapter 3 Review and Solution to Problems
Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

Pb 3.2.14

Let $T, U: V \rightarrow W$ be linear transformations.
(a) Prove that $R(T+U) \subseteq R(T)+R(U)$.
(b) Prove that if W is finite-dimensional, then $\operatorname{rank}(T+U) \leq \operatorname{rank}(T)+\operatorname{rank}(U)$.
(c) Deduce from (b) that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$ for any $m \times n$ matrices A and B.
(a) $\forall w \in R(T+U), \exists v \in V$ such that $w=(T+U)(v) \stackrel{?}{=} T(v)+U(v) \in R(T)+R(U)$.
(b) $\operatorname{rank}(T+U)=\operatorname{dim}(R(T+U)) \stackrel{?}{\leq} \operatorname{dim}(R(T)+R(U)) \stackrel{?}{=}$ $\operatorname{dim}(R(T))+\operatorname{dim}(R(U))-\operatorname{dim}(R(T) \cap R(U)) \leq$ $\operatorname{dim}(R(T))+\operatorname{dim}(R(U))=\operatorname{rank}(T)+\operatorname{rank}(U)$.
(c) Note that $L_{A+B} \stackrel{?}{=} L_{A}+L_{B}$. Then
$\operatorname{rank}(A+B)=\operatorname{rank}\left(L_{A+B}\right)=\operatorname{rank}\left(L_{A}+L_{B}\right) \leq$ $\operatorname{rank}\left(L_{A}\right)+\operatorname{rank}\left(L_{B}\right)=\operatorname{rank}(A)+\operatorname{rank}(B)$.

Pb 3.2.17

Prove that if B is a 3×1 matrix and C is a 1×3 matrix, then the 3×3 matrix $B C$ has rank at most 1 . Conversely, show that if A is any 3×3 matrix having rank 1 , then there exists a 3×1 matrix B and a 1×3 matrix C such that $A=B C$.
(\Rightarrow) If $B=b \in F^{3 \times 1}$ and $\left.C=c^{T}=\left(c_{1}, c_{2}, c_{3}\right) \in F^{1 \times 3}\right)$, then $B C=b c^{T}=b\left(c_{1}, c_{2}, c_{3}\right) \stackrel{?}{=}\left(c_{1} b, c_{2} b, c_{3} b\right)$, thus $\operatorname{range}(B C) \stackrel{?}{=} \operatorname{span}(\{b\})$ and $\operatorname{rank}(B C)=\operatorname{dim}(\operatorname{span}(\{b\})) \stackrel{?}{\leq} 1$.
$(\Leftarrow) \quad$ If $A=\left(a_{1}, a_{2}, a_{3}\right) \in F^{3 \times 3}$ have rank 1 , then range $(A) \stackrel{?}{=} \operatorname{span}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \stackrel{?}{=} \operatorname{span}(\{b\})$ for some $b \neq 0 \in F^{3 \times 1}$, and $\exists c^{T}=\left(c_{1}, c_{2}, c_{3}\right) \in F^{1 \times 3}$ such that $a_{1}=c_{1} b$, $a_{2}=c_{2} b, a_{3}=c_{3} b$. Therefore,
$A=\left(c_{1} b, c_{2} b, c_{3} b\right)=b\left(c_{1}, c_{2}, c_{3}\right)=B C$ with $B=b$ and $C=c^{T}$.

Pb 3.2.19

Let A be an $m \times n$ matrix with rank m and B be an $n \times p$ matrix with rank n. Determine the rank of $A B$. Justify your answer.

If A is $m \times n$ with $\operatorname{rank}(A)=m$ and B is $n \times p$ with $\operatorname{rank}(B)=n$, then $L_{A}: F^{n} \rightarrow F^{m}$ with $R(A)=R\left(L_{A}\right)=L_{A}\left(F^{n}\right) \stackrel{?}{=} F^{m}$ and $L_{B}: F^{p} \rightarrow F^{n}$ with $R(B)=R\left(L_{B}\right)=L_{B}\left(F^{p}\right) \stackrel{?}{=} F^{n}$.

Note that $A B$ is $m \times p$ and $L_{A B}: F^{p} \rightarrow F^{m}$. Therefore, $R(A B)=R\left(L_{A B}\right)=L_{A B}\left(F^{p}\right) \stackrel{?}{=} L_{A}\left(L_{B}\left(F^{p}\right)\right) \stackrel{?}{=} L_{A}\left(F^{n}\right) \stackrel{?}{=} F^{m}$ and $\operatorname{rank}(A B) \stackrel{?}{=} m$.

