Math 4377/6308 Advanced Linear Algebra Chapter 4 Review and Solution to Problems

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

Pb 4.2.23

Let $A \in M_{n}(F)$ be an upper triangular matrix. Show that

$$
\operatorname{det}(A)=\prod_{i=1}^{n} A_{i j}
$$

First, note that $A_{i j}=0$ for all $i>j$. We proceed by induction on n.

- $n=1$: Obvious as $\operatorname{det}(A)=A_{11}$.
- $n-1 \Rightarrow n$: We take the determinant by expanding along the last row of A. Let $\tilde{A}_{i j}$ be the matrix obtained from A by deleting the i th row and j th column. Then

$$
\operatorname{det}(A)=(-1)^{n+n} A_{n n} \operatorname{det}\left(\tilde{A}_{n n}\right)=A_{n n} \prod_{i=1}^{n-1} A_{i i}=\prod_{i=1}^{n} A_{i i}
$$

by the induction hypothesis as $\tilde{A}_{n n}$ is upper triangular.

Pb 4.3.10

Suppose $M \in M_{n}(F)$ is nilpotent, i.e., there is a $k \geq 0$ such that $M^{k}=0$. Show M is not invertible.

Proof. By the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and an easy induction argument, we have

$$
0=\operatorname{det}(0)=\operatorname{det}\left(M^{k}\right)=\prod_{i=1}^{k} \operatorname{det}(M)=(\operatorname{det}(M))^{k}
$$

Taking k th roots, we have $\operatorname{det}(M)=0$, so M is not invertible.

Pb 4.3.11

Suppose $M \in M_{n}(F)$ is skew-symmetric, i.e., $M^{t}=-M$. Show that if n is odd, then M is not invertible. What if n is even?

Proof. We know that

$$
\operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)=\operatorname{det}(-M)=(-1)^{n} \operatorname{det}(M)
$$

If n is odd, then $\operatorname{det}(M)=-\operatorname{det}(M)$, so $\operatorname{det}(M)=0$, and M is not invertible. However, this equation tells us nothing if n is even. To fully answer this question, we must include examples of skew symmetric matrices which are invertible and non-invertible for n even. For $n=2$, both

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

are skew symmetric; the first is not invertible, and the second is invertible. Now for $n>2$, we get examples by taking block diagonal matrices using the above examples.

Pb 4.3.15

Prove that if $A, B \in M_{n}(F)$ are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$.

Proof. If A and B are similar, then

$$
A=Q^{-1} B Q
$$

for some invertible Q. Taking determinants gives

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(Q^{-1} B Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(B) \operatorname{det}(Q) \\
& =\frac{1}{\operatorname{det}(Q)} \operatorname{det}(B) \operatorname{det}(Q)=\operatorname{det}(B)
\end{aligned}
$$

Pb 4.3.21

Suppose that $M \in M_{n}(F)$ can be written in the block upper triangular form

$$
M=\left(\begin{array}{ll}
A & B \\
0 & C
\end{array}\right)
$$

where $A \in M_{k}(F)$ and $C \in M_{n-k}(F)$. Prove that

$$
\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(C)
$$

First, We proceed by induction on n.

- $n=2$: Obvious as

$$
\operatorname{det}(M)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=a c
$$

- $n-1 \Rightarrow n$: We take the determinant by expanding along the first column of M. Let $\tilde{M}_{i j}$ be the matrix obtained from M by deleting the i th row and j th column.

First, note that $M_{i 1}=0$ for all $i>k$. For $i \leq k, M_{i 1}=A_{i 1}$ and

$$
\operatorname{det} \tilde{M}_{i 1}=\operatorname{det}\left(\begin{array}{cc}
\tilde{A}_{i 1} & \tilde{B} \\
0 & C
\end{array}\right)=\operatorname{det}\left(\tilde{A}_{i 1}\right) \operatorname{det}(C)
$$

by the induction hypothesis as $\tilde{M}_{i 1}$ is block upper triangular. Then

$$
\begin{aligned}
\operatorname{det}(M) & =\sum_{i=1}^{n}(-1)^{i+1} M_{i 1} \operatorname{det}\left(\tilde{M}_{i 1}\right)=\sum_{i=1}^{k}(-1)^{i+1} M_{i 1} \operatorname{det}\left(\tilde{M}_{i 1}\right) \\
& =\left(\sum_{i=1}^{k}(-1)^{i+1} A_{i 1} \operatorname{det}\left(\tilde{A}_{i 1}\right)\right) \operatorname{det}(C)=\operatorname{det}(A) \operatorname{det}(C)
\end{aligned}
$$

