Math 4377/6308 Advanced Linear Algebra Chapter 5 Review and Solution to Problems

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

Pb 5.1.9

Prove that the eigenvalues of an upper triangular matrix A are the diagonal entries of A.

Let A be an upper triangular matrix. Notice that λI_{n} is also an upper triangular matrix, thus $A-\lambda I_{n}$ is upper triangular. From problem 4.2.23 (which we proved on a previous homework) we know that the $\operatorname{det}\left(A-\lambda I_{n}\right)$ is the product of the diagonal entries, giving
$p(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\prod_{i=1}^{n}\left(a_{i i}-\lambda\right)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)$
where $a_{i i}$ are the diagonal entries of A. This is the characteristic polynomial of A and its roots are $a_{i i}$ for all i. Thus the eigenvalues of A are its diagonal entries.

Pb 5.1.12

(a) Prove that similar matrices have the same characteristic polynomial.
(b) Show that the definition of the characteristic polynomial of a linear operator on a finite-dimensional vector space V is independent of the choice of basis for V.
(a) Let A and B be similar, i.e., $\exists Q$ invertible such that $B=Q^{-1} A Q$. Note that $\operatorname{det}\left(Q^{-1}\right)=(\operatorname{det}(Q))^{-1}$. We have

$$
\begin{aligned}
p_{B}(\lambda) & =\operatorname{det}\left(B-\lambda I_{n}\right)=\operatorname{det}\left(Q^{-1} A Q-\lambda I_{n}\right)=\operatorname{det}\left(Q^{-1} A Q-\lambda Q^{-1} I_{n} Q\right) \\
& =\operatorname{det}\left(Q^{-1}\left(A-\lambda I_{n}\right) Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}\left(A-\lambda I_{n}\right) \operatorname{det}(Q) \\
& =\operatorname{det}\left(A-\lambda I_{n}\right)(\operatorname{det}(Q))^{-1} \operatorname{det}(Q)=\operatorname{det}\left(A-\lambda I_{n}\right)=p_{A}(\lambda) .
\end{aligned}
$$

(b) Let T be a linear operator on a finite-dimensional vector space V, and let β and γ are any ordered bases for V, then $[T]_{\beta}$ is similar to $[T]_{\gamma}$. Result follows by (a).

Pb 5.1.14

For any square matrix A, prove that A and A^{t} have the same characteristic polynomial (and hence the same eigenvalues).

We know that $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$ so a simple calculation gives
$p_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(\left(A-\lambda I_{n}\right)^{t}\right)=\operatorname{det}\left(A^{t}-\lambda I_{n}\right)=p_{A^{t}}(\lambda)$,
since λI_{n} is symmetric. Thus A and A^{t} have the same characteristic polynomial.

Pb 5.1.20

Let A be an $n \times n$ matrix with characteristic polynomial

$$
f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

Prove that $f(0)=a_{0}=\operatorname{det}(A)$. Deduce that A is invertible if and only if $a_{0} \neq 0$.

Note that

$$
f(t)=\operatorname{det}\left(A-t I_{n}\right) \quad \Rightarrow \quad f(0)=\operatorname{det}\left(A-0 \cdot I_{n}\right)=\operatorname{det}(A)
$$

Also, we have

$$
f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} \quad \Rightarrow \quad f(0)=a_{0} .
$$

Thus $a_{0}=\operatorname{det}(A)$. From Corollary of Theorem 4.7, A is invertible if and only if $\operatorname{det}(A)=a_{0} \neq 0$.

Pb 5.2.7

For $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$, find an expression for A^{n}, where n is an arbitrary positive integer.

Note that A has two distinct eigenvalues 5 and -1 , thus is diagonalizable, i.e.,

$$
Q^{-1} A Q=D \quad \text { with } D=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right), \quad Q=\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)
$$

Note that $Q^{-1}=\frac{1}{3} Q$. So we have

$$
\begin{aligned}
A^{n} & =Q D^{n} Q^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
5^{n} & 0 \\
0 & (-1)^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
5^{n}+2 \cdot(-1)^{n} & 2 \cdot 5^{n}+2 \cdot(-1)^{n+1} \\
5^{n}+(-1)^{n+1} & 2 \cdot 5^{n}+(-1)^{n}
\end{array}\right)
\end{aligned}
$$

Pb 5.2.12

Let T be an invertible linear operator on a finite-dimensional vector space V.
(a) Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1}. Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1}.
(b) Prove that if T is diagonalizable, then T^{-1} is diagonalizable.
(a) Let $E_{T, \lambda}=N(T-\lambda / V)$ and $E_{T^{-1}, \lambda}=N\left(T^{-1}-\lambda^{-1} / V\right)$.
$\left(E_{T, \lambda} \subseteq E_{T-1, \lambda^{-1}}\right) \quad$ If $x \in E_{T, \lambda}$, then $T(x)=\lambda x$. Applying T^{-1} to both sides gives

$$
x=T^{-1}(T(x))=T^{-1}(\lambda x)=\lambda T^{-1}(x) \quad \Rightarrow \quad T^{-1}(x)=\lambda^{-1} x
$$

since T is invertible, $\lambda \neq 0$.
$\left(E_{T^{-1}, \lambda^{-1}} \subseteq E_{T, \lambda}\right) \quad$ If $x \in E_{T^{-1}, \lambda^{-1}}$, then $T^{-1}(x)=\lambda^{-1} x$.
Applying T to both sides gives

$$
x=T\left(T^{-1}(x)\right)=T\left(\lambda^{-1} x\right)=\lambda^{-1} T(x) \quad \Rightarrow \quad T(x)=\lambda x
$$

(b) If T is diagonalizable, then there is a basis β for V such that

$$
[T]_{\beta}=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

Since T is invertible, $\lambda_{j} \neq 0$. From Theorem 2.18, we have

$$
\left[T^{-1}\right]_{\beta}=\left([T]_{\beta}\right)^{-1}=\left(\begin{array}{ccc}
\lambda_{1}^{-1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}^{-1}
\end{array}\right)
$$

Since $\left[T^{-1}\right]_{\beta}$ is diagonal, T^{-1} is diagonalizable.

Let $A \in M_{n \times n}(F)$. Recall from Exercise 14 of Section 5.1 that A and A^{t} have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^{t}, let E_{λ} and E_{λ}^{\prime} denote the corresponding eigenspaces for A and A^{t}, respectively.
(a) (a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
(b) Prove that for any eigenvalue $\lambda, \operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(E_{\lambda}^{\prime}\right)$.
(c) Prove that if A is diagonalizable, then A^{t} is also diagonalizable.
(a) Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$. The eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=2$, and we have $E_{\lambda_{1}}=\operatorname{span}\left\{(1,0)^{t}\right\}$ and
$E_{\lambda_{2}}=\operatorname{span}\left\{(1,1)^{t}\right\}$. However, we have $A^{t}=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$ and
$E_{\lambda_{1}}=\operatorname{span}\left\{(1,-1)^{t}\right\}$ and $E_{\lambda_{2}}=\operatorname{span}\left\{(0,1)^{t}\right\}$.
(b) Note that $E_{\lambda}=N(A-\lambda I)$ and $E_{\lambda}^{\prime}=N\left(A^{t}-\lambda I\right)$. By the dimension theorem (Theorem 2.3), we have

$$
\begin{aligned}
\operatorname{dim}\left(E_{\lambda}\right) & =\operatorname{dim}(N(A-\lambda I))=n-\operatorname{rank}(A-\lambda I)=n-\operatorname{rank}\left((A-\lambda I)^{t}\right) \\
& =n-\operatorname{rank}\left(A^{t}-\lambda I\right)=\operatorname{dim}\left(N\left(A^{t}-\lambda I\right)\right)=\operatorname{dim}\left(E_{\lambda}^{\prime}\right)
\end{aligned}
$$

since $\operatorname{rank} B^{t}=\operatorname{rank} B$ for any matrix B.
(c) If A is diagonalizable, then from Theorem 5.6, the characteristic polynomial of A splits. Let m_{λ} be the multiplicity of λ as an eigenvalue of A. From Theorem 5.9, we have $\operatorname{dim}\left(E_{\lambda}\right)=m_{\lambda}$. Note that m_{λ} is also the multiplicity of λ as an eigenvalue of A^{\prime}. From (a), we have $\operatorname{dim}\left(E_{\lambda}^{\prime}\right)=\operatorname{dim}\left(E_{\lambda}\right)=m_{\lambda}$. From Theorem 5.9, A^{t} is diagonalizable.

Pb 5.2.18

(a) Prove that if T and U are simultaneously diagonalizable operators, then T and U commute (i.e., $U T=T U$).
(b) Prove that if A and B are simultaneously diagonalizable matrices, then A and B commute (i.e., $A B=B A$).
(a) Note that if D_{1} and D_{2} are diagonal matrices, then
$D_{1} D_{2}=D_{2} D_{1}$. If T and U are simultaneously diagonalizable operators, then there is a basis β for V such that $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. Using that fact and Theorem 2.11, we get

$$
[T U]_{\beta}=[T]_{\beta}[U]_{\beta}=[U]_{\beta}[T]_{\beta}=[U T]_{\beta}
$$

By Theorem 2.20, we can conclude from $[T U]_{\beta}=[U T]_{\beta}$ that $T U=U T$.
(b) If A and B are simultaneously diagonalizable matrices, then there is an invertible matrix such that $Q^{-1} A Q$ and $Q^{-1} B Q$ are diagonal. As noted above, this means that these matrices commute. Then
$Q^{-1} A B Q=\left(Q^{-1} A Q\right)\left(Q^{-1} B Q\right)=\left(Q^{-1} B Q\right)\left(Q^{-1} A Q\right)=Q^{-1} B A Q$.
Multiplying the above by Q on the left and Q^{-1} on the right gives $A B=B A$.

