Advanced Linear AlgebraMidterm 1Math 4377 / 6308 (Spring 2015)March 5, 2015

Name and ID: _

- 20 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case).
 - (1) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S.
 - (2) Any set containing the zero vector is linearly dependent.
 - (3) Subsets of linearly dependent sets are linearly dependent.
 - (4) Subsets of linearly independent sets are linearly independent.
 - (5) Every vector space that is generated by a finite set has a basis.
 - (6) Every vector space has a finite basis.
 - (7) If a vector space has a finite basis, then the number of vectors in every basis is the same.
 - (7) The dimension of $M_{m \times n}(F)$ is m + n.
 - (8) Suppose that V is a finite-dimensional vector space, that S_1 is a linearly independent subset of V, and that S_2 is a subset of V that generates V. Then S_1 cannot contain more vectors than S_2 .
 - (9) If V is a vector space having dimension n, and if S is a subset of V with n vectors, then S is linearly independent if and only if S spans V.
 - (10) If $T: V \to W$ is linear, then $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(W)$.
- 20 points 2. The first four Chebyshev polynomials are 1, x, $2x^2 1$, and $4x^3 3x$. These polynomials arise naturally in the study of certain important differential equations. Show that the first four Chebyshev polynomials form a basis of $P_3(\mathbb{R})$.
- 20 points 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T(a, b, c) = (3a, -2a + c, b).$$

Prove that T is an isomorphism and find T^{-1} .

- 20 points 4. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be given by T(a, b, c) = (a b, 2c).
 - (a) Show that T is a linear transformation.
 - (b) Find bases for the null space and the range of T.
 - (c) Compute the nullity and rank of T, and verify the dimension theorem.
- 20 points 5. Let W_1 and W_2 be subspaces of a vector space V.
 - (a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .
 - (b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

(c) Suppose

 $W_1 = \operatorname{span}\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}, \quad W_2 = \operatorname{span}\{\mathbf{v}_1, \cdots, \mathbf{v}_q\}.$

where $\mathbf{u}_1, \dots, \mathbf{u}_p$ and $\mathbf{v}_1, \dots, \mathbf{v}_q$ are vectors in V. Show that

 $W_1 + W_2 = \operatorname{span}\{\mathbf{u}_1, \cdots, \mathbf{u}_p, \mathbf{v}_1, \cdots, \mathbf{v}_q\}.$

- 20 points 6. (BONUS PROBLEM) Let V and W be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Let V_0 be a subspace of V.
 - (a) Prove that $T(V_0)$ is a subspace of W.
 - (b) Prove that $\dim(V_0) = \dim(T(V_0))$.

Name and ID: _ Problem 1.

- (1) False.
- (2) True.
- $(3)\,$, False.
- (4) True.
- (5) True.
- (6) False.
- (7) True.
- (7') False.
- (8) True.
- (9) True.
- (10) False.

Problem 2.

Let $\beta = \{1, x, 2x^2 - 1, 4x^3 - 3x\}$ and let $\gamma = \{1, x, x^2, x^3\}$ be the standard ordered basis for $P_3(\mathbb{R})$. We have the coordinate vectors of β in γ as:

$$[1]_{\gamma} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \quad [x]_{\gamma} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad [-1+2x^2]_{\gamma} = \begin{pmatrix} -1\\0\\2\\0 \end{pmatrix} \quad [-3x+4x^3]_{\gamma} = \begin{pmatrix} 0\\-3\\0\\4 \end{pmatrix}$$

Note that the matrix with the coordinate vectors as columns have four pivots

$$Q = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

Then $\{[1]_{\gamma}, [x]_{\gamma}, [-1+2x^2]_{\gamma}, [-3x+4x^3]_{\gamma}\}$ is linearly independent. By Thorem 2.21, β is linearly independent. Combined with the fact that $|\beta| = \dim(P_3(\mathbb{R})) = 4$, β is a basis for $P_3(\mathbb{R})$.

Name and ID: _____ Problem 3.

Let $\beta = \{e_1, e_2, e_3\}$ be the standard ordered basis for \mathbb{R}^3 . The matrix representation of T in β is

$$[T]_{\beta} = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Note that the augmented matrix

$$\begin{bmatrix} [T]_{\beta} \mid I_3 \end{bmatrix} = \begin{pmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1/3 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2/3 & 1 & 0 \end{pmatrix} = \begin{bmatrix} I_3 \mid ([T]_{\beta})^{-1} \end{bmatrix}$$

So we have

$$[T]_{\beta}^{-1} = \begin{pmatrix} 1/3 & 0 & 0\\ 0 & 0 & 1\\ 2/3 & 1 & 0 \end{pmatrix}$$

By Theorem 2.18, T is invertible and $[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}$. We have

$$T^{-1}(a, b, c) = (a/3, c, 2a/3 + b).$$

Problem 4.

(a) Note that, in the matrix and column vector notation, we have

$$x \in \mathbb{R}^3 \mapsto T(x) = Ax, \quad A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Then, T is linear.

(b) To find the null space of T, row reduce the augmented matrix corresponding to Ax = 0

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

We have

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_2 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Then

the null space of
$$T = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

The range of T is the column space of A and we have

the range of
$$T = \text{span} \{ \text{pivot columns of } A \} = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

(c) The nullity of T is 1 and the rank of T is 2 We have

$$nullity(T) + rank(T) = 1 + 2 = 3 = dim(\mathbb{R}^3).$$

Then, the dimension theorem is verified.

Name and ID: . Problem 5.

- (a) $W_1 + W_2$ is a subspace of W: Closed under vector addition, because if $u, v \in W_1 + W_2$, then there exist $u_1, v_1 \in W_1$ and $u_2, v_2 \in W_2$ such that $u = u_1 + u_2$ and $v = v_1 + v_2$, and then $u + v = u_1 + u_2 + v_1 + v_2 = (u_1 + v_1) + (u_2 + v_2) \in W_1 + W_2$. For scalar multiplication, $au = a(u_1 + u_2) = au_1 + au_2 \in W_1 + W_2$. Finally, $W_1 + W_2$ contains 0 since both W_1, W_2 are subspaces and therefore contain 0. $W_1 + W_2$ contains both W_1 and W_2 : Every vector in $W_1 + W_2$ has the form x + y with $x \in W_1, y \in W_2$. Set y = 0to obtain all vectors in W_1 and x = 0 to obtain all vectors in W_2 . That is, any vector $x \in W_1$ or $y \in W_2$ is also present in $W_1 + W_2$.
- (b) A subspace W of V that contains both W_1 and W_2 must also contain all vectors of the form x + y with $x \in W_1$, $y \in W_2$, since it is closed under addition. Therefore it contains $W_1 + W_2$.
- (c) (\Rightarrow) $W_1 + W_2 \subseteq \operatorname{span}\{\mathbf{u}_1, \cdots, \mathbf{u}_p, \mathbf{v}_1, \cdots, \mathbf{v}_q\}$: For any $\mathbf{u} \in W_1 = \operatorname{span}\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ and $\mathbf{v} \in W_2 = \operatorname{span}\{\mathbf{v}_1, \cdots, \mathbf{v}_q\}$, there exist c_1, \cdots, c_p and d_1, \cdots, d_q such that

$$\mathbf{u} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p, \quad \mathbf{v} = d_1 \mathbf{v}_1 + \dots + d_q \mathbf{v}_q.$$

Then

$$\mathbf{u} + \mathbf{v} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p + d_1 \mathbf{v}_1 + \dots + d_q \mathbf{v}_q \in \operatorname{span}\{\mathbf{u}_1, \dots, \mathbf{u}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$$

 (\Leftarrow) span{ $\mathbf{u}_1, \cdots, \mathbf{u}_p, \mathbf{v}_1, \cdots, \mathbf{v}_q$ } $\subseteq W_1 + W_2$: For any $\mathbf{w} \in$ span{ $\mathbf{u}_1, \cdots, \mathbf{u}_p, \mathbf{v}_1, \cdots, \mathbf{v}_q$ }, there exist c_1, \cdots, c_p and d_1, \cdots, d_q such that

$$\mathbf{w} = (c_1\mathbf{u}_1 + \dots + c_p\mathbf{u}_p) + (d_1\mathbf{v}_1 + \dots + d_q\mathbf{v}_q) \in W_1 + W_2$$

Problem 6. (BONUS PROBLEM)

- (a) (1) $T(V_0)$ contains 0_W , since $0_V \in V_0$ and $T(0_V) = 0_W$. (2) Let $u_1, u_2 \in T(V_0)$, then there exist $v_1, v_2 \in V_0$ such that $T(v_1) = u_1$ and $T(v_2) = u_2$. Then $v_1 + v_2 \in V_0$, and $T(V_0) \ni T(v_1 + v_2) = T(v_1) + T(v_2) = u_1 + u_2$. (3) Similarly for scalar multiplication, let $u \in T(V_0)$, then there exists $v \in V_0$ such that T(v) = u. Then $av \in V_0$, and $T(V_0) \ni T(av) = aT(v) = au$. Combining (1)-(3) shows that $T(V_0)$ is a subspace of W.
- (a') Let $\beta = \{u_1, \dots, u_n\}$ be a basis for V_0 . T being linear, we have

$$T(V_0) = \{T(v), \forall v \in V_0\} = \{T(a_1u_1 + \dots + a_nu_n), \forall a_1, \dots, a_n \in F\}$$

$$= \{a_1 T(u_1) + \dots + a_n T(u_n), \forall a_1, \dots, a_n \in F\} = \operatorname{span}\{T(u_1), \dots, T(u_n)\}\$$

Then $T(V_0)$ is a subspace of W.

(b) Let $\beta = \{u_1, \dots, u_n\}$ be a basis for V_0 . $T(\beta)$ is then a basis for $T(V_0)$ (from (a')), since it spans $T(V_0)$ and its vectors are linearly independent:

$$a_1T(u_1) + \dots + a_nT(u_n) = T(a_1u_1 + \dots + a_nu_n) = 0$$

gives $a_1u_1 + \cdots + a_nu_n = 0$ since T is an isomorphism, and $a_1 = \cdots = a_n = 0$ since β is a basis for V_0 . Thus, $n = \dim(V_0) = \dim(T(V_0))$.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.