Name and ID:

1. Label the following statements are true or false
(a) The rank of a matrix is equal to the maximum number of linearly independent rows in the matrix.
(b) An $n \times n$ matrix having rank n is invertible.
(c) Any homogeneous system of linear equations has at least one solution.
(d) If the homogeneous system corresponding to a given system of linear equations has a solution, then the given system has a solution.
(e) The determinant of an upper triangular $n \times n$ matrix is the product of its diagonal entries.
(f) A matrix $A \in M_{n \times n}(F)$ has rank n if and only if $\operatorname{det}(A) \neq 0$.
(g) If a real matrix has one eigenvector, then it has an infinite number of eigenvectors.
(h) Similar matrices always have the same eigenvalues.
(i) Let $A \in M_{n \times n}(F)$ and $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be an ordered basis for F^{n} consisting of eigenvectors of A. If Q is the $n \times n$ matrix whose j th column is $v_{j}(1 \leq j \leq n)$, then $Q^{-1} A Q$ is a diagonal matrix.
(j) A linear operator T on a finite-dimensional vector space is diagonalizable if and only if the characteristic polynomial of T splits and the multiplicity of each eigenvalue λ equals the dimension of E_{λ}.

10 points
2. Describe the solution set of

$$
2 x_{1}+4 x_{2}-6 x_{3}=0, \quad 4 x_{1}+8 x_{2}-10 x_{3}=0 ;
$$

compare it to the solution set

$$
2 x_{1}+4 x_{2}-6 x_{3}=0, \quad 4 x_{1}+8 x_{2}-10 x_{3}=4 .
$$

3. Prove that if B is a $n \times 1$ matrix and C is a $1 \times n$ matrix, then the $n \times n$ matrix $B C$ has rank at most 1 . Conversely, show that if A is any $n \times n$ matrix having rank 1 , then there exists a $n \times 1$ matrix B and a $1 \times n$ matrix C such that $A=B C$.
4. Compute the determinant of each of the following matrices

$$
\text { (a) }\left(\begin{array}{llll}
1 & 0 & 2 & 3 \\
4 & 2 & 1 & 3 \\
0 & 0 & 3 & 4 \\
0 & 0 & 4 & 5
\end{array}\right), \quad \text { (b) }\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right), \quad \text { (c) } \quad\left(\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right) \text {. }
$$

5. Let $A \in M_{n \times n}(F)$ such that $A^{k}=0$ for some positive integer k. Prove that A is not invertible.

15 points
6. For $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$, find an expression for e^{A}. (Recall that the exponential of A, denoted by e^{A}, is the matrix given by the power series $\left.e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}\right)$.

15 points 7. Prove that similar matrices have the same characteristic polynomial.
20 points 8. (BONUS PROBLEM) Let $A \in M_{n \times n}(F)$. Prove that if A is diagonalizable, then A^{t} is also diagonalizable.

Name and ID:

Problem 1.

(a) True. From Corollary 2 in Page 158, $\operatorname{rank}(A)=\operatorname{dim}($ row space of $A)=\operatorname{dim}($ column space of $A)$.
(b) True. From Theorem 2.5, $L_{A}: F^{n} \rightarrow F^{n}$ is invertible if and only if $\operatorname{rank}\left(L_{A}\right)=$ $\operatorname{dim}\left(F^{n}\right)$, i.e., $\operatorname{rank}(A)=n$. From Corollary 2 in Page 102, A is invertible if and only if L_{A} is invertible. Then A is invertible if and only if $\operatorname{rank}(A)=n$.
(c) True. Any homogeneous system of linear equations has zero as a solution.
(d) False. For example, the system that $0 x=1$ has no solution while the corresponding homogeneous system $0 x=0$ has a solution.
(e) True. It is from Problem 4.2.23 in Page 222.
(f) True. From Property 7 in Page 236, A is invertible if and only if $\operatorname{det}(A) \neq 0$. Combined with the result (b) above, A has rank n if and only if $\operatorname{det}(A) \neq 0$.
(g) True. If $v \in E_{\lambda} \backslash\{0\}$, i.e., v is an eigenvector of A, then $c v \in E_{\lambda} \backslash\{0\}$ for any $c \in \mathbb{R} \backslash\{0\}$.
(h) True. From Problem 5.1.12(a), similar matrices have the same charateristic polynomial, thus have the same eigenvalues.
(i) True. Let $Q=\left(v_{1}, \cdots, v_{n}\right)$ be the $n \times n$ matrix whose j th column is $v_{j}(1 \leq j \leq n)$ such that $A v_{j}=\lambda_{j} v_{j}$, then $A Q=A\left(v_{1}, \cdots, v_{n}\right)=\left(A v_{1}, \cdots, A v_{n}\right)=\left(\lambda_{1} v_{1}, \cdots, \lambda_{n} v_{n}\right)=$ $\left(v_{1}, \cdots, v_{n}\right) \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)=Q D$ with $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Therefore, $Q^{-1} A Q=$ D is a diagonal matrix.
(j) True. It is from Theorem 5.9 (i.e., the test for diagonalization).

Problem 2.

Note that the corresponding augmented matrix to

$$
2 x_{1}+4 x_{2}-6 x_{3}=0, \quad 4 x_{1}+8 x_{2}-10 x_{3}=0
$$

is

$$
\left(\begin{array}{cccc}
2 & 4 & -6 & 0 \\
4 & 8 & -10 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & -3 & 0 \\
4 & 8 & -10 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & 0 & 2 & 0
\end{array}\right) \sim\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The vector form of the solution is

$$
x=\left(\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) .
$$

The corresponding augmented matrix to

$$
2 x_{1}+4 x_{2}-6 x_{3}=0, \quad 4 x_{1}+8 x_{2}-10 x_{3}=4
$$

is

$$
\left(\begin{array}{cccc}
2 & 4 & -6 & 0 \\
4 & 8 & -10 & 4
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & 0 & 6 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

The vector form of the solution is

$$
x=\left(\begin{array}{l}
6 \\
0 \\
2
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)
$$

Name and ID: \qquad

Problem 3.

$(\Rightarrow) \quad$ If $B=b \in F^{n \times 1}$ and $C=c^{T}=\left(c_{1}, \cdots, c_{n}\right) \in F^{1 \times n}$, then

$$
B C=b c^{T}=b\left(c_{1}, \cdots, c_{n}\right)=\left(c_{1} b, \cdots, c_{n} b\right)
$$

thus range $(B C)=\operatorname{span}(\{b\})$ and $\operatorname{rank}(B C)=\operatorname{dim}(\operatorname{span}(\{b\})) \leq 1$.
$(\Leftarrow) \quad$ If $A=\left(a_{1}, \cdots, a_{n}\right) \in F^{n \times n}$ have rank 1, then

$$
\operatorname{range}(A)=\operatorname{span}\left(\left\{a_{1}, \cdots, a_{n}\right\}\right)=\operatorname{span}(\{b\})
$$

for some $b \neq 0 \in F^{n \times 1}$, and $\exists c^{T}=\left(c_{1}, \cdots, c_{n}\right) \in F^{1 \times n}$ such that

$$
a_{1}=c_{1} b, \cdots, a_{n}=c_{n} b .
$$

Therefore,

$$
A=\left(c_{1} b, \cdots, c_{n} b\right)=b\left(c_{1}, \cdots, c_{n}\right)=B C
$$

with $B=b$ and $C=c^{T}$.

Problem 4.

(a)

$$
\operatorname{det}\left(\begin{array}{llll}
1 & 0 & 2 & 3 \\
4 & 2 & 1 & 3 \\
0 & 0 & 3 & 4 \\
0 & 0 & 4 & 5
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
4 & 2
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
3 & 4 \\
4 & 5
\end{array}\right)=(1 \cdot 2)(3 \cdot 5-4 \cdot 4)=-2
$$

(b)

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right)=1 \cdot 2 \cdot 3 \cdot 4=24
$$

(c)

$$
\operatorname{det}\left(\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)=-\operatorname{det}\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)=-(3 \cdot 1 \cdot 2 \cdot 4)=-24
$$

Name and ID:

Problem 5.

Proof. By the fact that $\operatorname{det}(B C)=\operatorname{det}(B) \operatorname{det}(C)$ and an easy induction argument, we have

$$
0=\operatorname{det}(0)=\operatorname{det}\left(A^{k}\right)=\prod_{i=1}^{k} \operatorname{det}(A)=(\operatorname{det}(A))^{k}
$$

Taking k th roots, we have $\operatorname{det}(A)=0$, so A is not invertible.

Problem 6.

Note that A has two distinct eigenvalues 5 and -1 , thus is diagonalizable, i.e.,

$$
Q^{-1} A Q=D \quad \text { with } D=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right), \quad Q=\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right), \quad Q^{-1}=\frac{1}{3} Q
$$

Note that

$$
A^{k}=Q D^{k} Q^{-1}, \quad e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}=Q\left(\sum_{k=0}^{\infty} \frac{1}{k!} D^{k}\right) Q^{-1}=Q e^{D} Q^{-1}
$$

So we have

$$
\begin{aligned}
e^{A} & =Q e^{D} Q^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
e^{5} & 0 \\
0 & e^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
e^{5}+2 e^{-1} & 2 e^{5}-2 e^{-1} \\
e^{5}-e^{-1} & 2 e^{5}+e^{-1}
\end{array}\right)
\end{aligned}
$$

Name and ID:

Problem 7.

Let A and B be similar, i.e., $\exists Q$ invertible such that $B=Q^{-1} A Q$. Note that $\operatorname{det}\left(Q^{-1}\right)=$ $(\operatorname{det}(Q))^{-1}$. We have

$$
\begin{aligned}
p_{B}(\lambda) & =\operatorname{det}\left(B-\lambda I_{n}\right)=\operatorname{det}\left(Q^{-1} A Q-\lambda I_{n}\right)=\operatorname{det}\left(Q^{-1} A Q-\lambda Q^{-1} I_{n} Q\right) \\
& =\operatorname{det}\left(Q^{-1}\left(A-\lambda I_{n}\right) Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}\left(A-\lambda I_{n}\right) \operatorname{det}(Q) \\
& =\operatorname{det}\left(A-\lambda I_{n}\right)(\operatorname{det}(Q))^{-1} \operatorname{det}(Q)=\operatorname{det}\left(A-\lambda I_{n}\right)=p_{A}(\lambda)
\end{aligned}
$$

Problem 8. (BONUS PROBLEM)

(1st proof:)

Note that $(B C)^{t}=C^{t} B^{t}$ for any dimension consistent matrices B and C. If A is diagonalizable, then there are an invertible matrix Q and a diagonal matrix D such that $D=Q^{-1} A Q$. Taking the transpose on both sides gives

$$
D=D^{t}=\left(Q^{-1} A Q\right)^{t}=(Q)^{t}(A)^{t}\left(Q^{-1}\right)^{t}=\tilde{Q}^{-1} A^{t} \tilde{Q}
$$

with $\tilde{Q}=\left(Q^{-1}\right)^{t}$ and we have $\tilde{Q}^{-1}=Q^{t}$. Therefore, A^{t} is diagonalizable.
(2nd proof:)
If A is diagonalizable, then from Theorem 5.6, the characteristic polynomial of A splits. Let m_{λ} be the multiplicity of λ as an eigenvalue of A. From Theorem 5.9, we have $\operatorname{dim}\left(E_{\lambda}\right)=m_{\lambda}$. Note that A and A^{\prime} have the the characteristic polynomial. Then m_{λ} is also the multiplicity of λ as an eigenvalue of A^{\prime}. Note that $E_{\lambda}=N(A-\lambda I)$ and $E_{\lambda}^{\prime}=N\left(A^{t}-\lambda I\right)$. By the dimension theorem (Theorem 2.3), we have

$$
\begin{aligned}
\operatorname{dim}\left(E_{\lambda}\right) & =\operatorname{dim}(N(A-\lambda I))=n-\operatorname{rank}(A-\lambda I)=n-\operatorname{rank}\left((A-\lambda I)^{t}\right) \\
& =n-\operatorname{rank}\left(A^{t}-\lambda I\right)=\operatorname{dim}\left(N\left(A^{t}-\lambda I\right)\right)=\operatorname{dim}\left(E_{\lambda}^{\prime}\right)
\end{aligned}
$$

since $\operatorname{rank} B^{t}=\operatorname{rank} B$ for any matrix B. Therefore, we have $\operatorname{dim}\left(E_{\lambda}^{\prime}\right)=\operatorname{dim}\left(E_{\lambda}\right)=m_{\lambda}$. From Theorem 5.9, A^{t} is diagonalizable.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.

