Advanced Linear Algebra
 Quiz 1
 Math 4377 / 6308 (Spring 2015) February 10, 2015

Name and ID:
10 points 1. Mark each statement True or False. Justify each answer.
(1) A vector is an arrow in three-dimensional space.
(2) A subset H of a vector space V is a subspace of V if the zero vector is in H.
(3) A subspace is also a vector space.
(4) If \mathbf{u} is a vector in a vector space V, then $(-1) \mathbf{u}$ is the same as the negative of \mathbf{u}.
(5) A vector space is also a subspace.
(6) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}.
(7) If f is a function in the vector space V of all real-valued functions on \mathbb{R} and if $f(t)=0$ for some t, then f is the zero vector in V.
(8) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S.
(9) Any set containing the zero vector is linearly dependent.
(10) Subsets of linearly dependent sets are linearly dependent.

15 points 2. Let W be the set of all vectors of the form $\left(\begin{array}{c}a+2 b+4 c \\ b+2 c \\ -a+3 b+6 c\end{array}\right)$ where a, b and c are arbitrary.
a. Find vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} such that $W=\boldsymbol{\operatorname { s p a n }}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. Why does this show that W is a subspace of \mathbb{R}^{3} ?
b. Find a basis for W and state the dimension of W.

15 points 3 . Suppose $\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}$ and $\mathbf{v}_{1}, \cdots, \mathbf{v}_{q}$ are vectors in a vector space V, and let

$$
H=\boldsymbol{\operatorname { s p a n }}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}, \quad K=\operatorname{span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\} .
$$

Show that $H+K=\boldsymbol{\operatorname { s p a n }}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\}$.

Name and ID:

Problem 1.

(1) False. A vector is an element of a vector space.
(2) False. A subset H of a vector space V is a subspace of V if (a) the zero vector is in H, (b) H is closed under vector addition, and (c) H is closed under scalar multiplication.
(3) True. A subspace is also a vector space in its own right.
(4) True. If \mathbf{u} is a vector in a vector space V, then, by Theorem $1.2,(-1) \mathbf{u}=-(1 \mathbf{u})=-\mathbf{u}$.
(5) True. A vector space is also a subspace of itself.
(6) False. \mathbb{R}^{2} is a vector space, but is not a subset of \mathbb{R}^{3}.
(7) False. The function f_{0} such that $f_{0}(t)=0$ for ANY t is the UNIQUE zero vector f_{0} in V.
(8) Fasle. $S=\{v, 0\}$ with $v \neq 0$ is linear dependent, but v is not a linear combination of 0 . If S is a linearly dependent set of two or more vectors, then AT LEAST ONE of the vectors in S is a linear combination of other vectors in S.
(9) True. Refer to lecture notes for Section 1.5.
(10) Fasle. $S=\{v, 0\}$ with $v \neq 0$ is linear dependent, but subset $\{v\}$ is not. Refer to Theorem 1.6 in Section 1.5.

Problem 2.

a. Note that

$$
\left(\begin{array}{c}
a+2 b+4 c \\
b+2 c \\
-a+3 b+6 c
\end{array}\right)=a\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+b\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+c\left(\begin{array}{l}
4 \\
2 \\
6
\end{array}\right)
$$

We have

$$
W=\left\{\left(\begin{array}{c}
a+2 b+4 c \\
b+2 c \\
-a+3 b+6 c
\end{array}\right), \quad a, b, c \in \mathbb{R}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}
$$

where

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{l}
4 \\
2 \\
6
\end{array}\right)
$$

W is a subspace of \mathbb{R}^{3} since $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are in \mathbb{R}^{3}, and by Theorem 1.5, $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a subspace of \mathbb{R}^{3}
b. By row reduction,

$$
\left(\mathbf{u}_{1} \mathbf{u}_{2}, \mathbf{u}_{3}\right)=\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 2 \\
-1 & 3 & 6
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

The pivot columns $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ form a basis for W and $\operatorname{dim}(W)=2$.

Name and ID: \qquad

Problem 3.

(a) $H+K \subseteq \operatorname{span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\}$: For any $\mathbf{u} \in H=\boldsymbol{\operatorname { s p a n }}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$ and $\mathbf{v} \in K=\operatorname{span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\}$, there exist c_{1}, \cdots, c_{p} and d_{1}, \cdots, d_{q} such that

$$
\mathbf{u}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}, \quad \mathbf{v}=d_{1} \mathbf{v}_{1}+\cdots+d_{q} \mathbf{v}_{q} .
$$

Then

$$
\mathbf{u}+\mathbf{v}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}+d_{1} \mathbf{v}_{1}+\cdots+d_{q} \mathbf{v}_{q} \in \operatorname{span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\}
$$

(b) $\boldsymbol{\operatorname { s p a n }}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\} \subseteq H+K$: For any $\mathbf{w} \in \operatorname{span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{q}\right\}$, we have

$$
\mathbf{w}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right)+\left(d_{1} \mathbf{v}_{1}+\cdots+d_{q} \mathbf{v}_{q}\right) \in H+K
$$

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.

