Advanced Linear Algebra
 Quiz 2
 Math 4377 / 6308 (Spring 2015)

Name and ID:

1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case). Let v_{1}, \cdots, v_{p} be vectors in a non-zero finite-dimensional vector space V, and $S=\left\{v_{1}, \cdots, v_{p}\right\}$.
(1) The set of all linear combinations of v_{1}, \cdots, v_{p} is a vector space.
(2) If $\left\{v_{1}, \cdots, v_{p-1}\right\}$ spans V, then S spans V.
(3) If $\left\{v_{1}, \cdots, v_{p-1}\right\}$ is linearly independent, then so is S.
(4) If S is linearly independent, then S is a basis for V.
(5) If S is linearly independent, then $\operatorname{dim} V \geq p$.
(6) If $V=\operatorname{span}\{S\}$, then some subset of S is a basis for V.
(7) If $V=\operatorname{span}\{S\}$, then $\operatorname{dim} V \leq p$.
(8) If $\operatorname{dim} V=p$ and $V=\operatorname{span}\{S\}$, then S cannot be linearly dependent.
(9) A plane in \mathbb{R}^{3} is a two-dimensional subspace.
(10) If A is $m \times n$ and $\operatorname{rank} A=m$, then the linear transformation $x \mapsto A x$ is one-to-one.
2. Let

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
-5 & 10 & -15
\end{array}\right), \quad b=\binom{2}{-10}, \quad c=\binom{3}{0} .
$$

Define a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T(x)=A x$ for every $x \in \mathbb{R}^{3}$.
(1) Find an x in \mathbb{R}^{3} whose image under T is b.
(2) Is there more than one x under T whose image is b.
(3) Determine if c is in the range of the transformation T.
(4) Find the null space and the range of T.
(5) Find the nullity and rank of T and verify the dimension theorem.
3. Use coordinate vectors to determine if

$$
\beta=\left\{1-t, 2-t+t^{2}, 2 t+3 t^{2}\right\}
$$

is a basis for $P_{2}(\mathbb{R})$.
4. (BONUS PROBLEM) Let V and W be vector spaces, let $T: V \rightarrow W$ be a linear transformation, and let $\left\{v_{1}, \cdots, v_{p}\right\}$ be a subset of V. Suppose that T is one-to-one transformation, so that $T(u)=T(v)$ always implies $u=v$. Show that if $\left\{v_{1}, \cdots, v_{p}\right\}$ is linearly independent in V, then the set $\left\{T\left(v_{1}\right), \cdots, T\left(v_{p}\right)\right\}$ is linearly independent in W.

Name and ID: \qquad

Problem 1. Problem 1.

(1) True. $\operatorname{span}\{S\}=\left\{\right.$ all linear combinations of $\left.v_{1}, \cdots, v_{p}\right\}$ is a subspace of V.
(2) True. $\operatorname{span}\left\{v_{1}, \cdots, v_{p-1}\right\} \subseteq \operatorname{span}\{S\} \subseteq V$. If $\operatorname{span}\left\{v_{1}, \cdots, v_{p-1}\right\}=V$, then $\operatorname{span}\{S\}=$ V.
(3) False. If $\left\{v_{1}, \cdots, v_{p-1}\right\}$ is linearly independent, then so is S only provided that $v_{p} \notin$ $\operatorname{span}\left\{v_{1}, \cdots, v_{p-1}\right\}$.
(4) False. If S is linearly independent, then S is a basis for V only provided that $V=$ $\operatorname{span}\{S\}$.
(5) True. If S is linearly independent, then, by Theorem $1.11, \operatorname{dim} V \geq p$.
(6) True. If $V=\operatorname{span}\{S\}$, then, by Theorem 1.9, some subset of S is a basis for V.
(7) True. If $V=\operatorname{span}\{S\}$, then, by Theorem 1.9, $\operatorname{dim} V \leq p$.
(8) True. If $\operatorname{dim} V=p$ and $V=\operatorname{span}\{S\}$, then, by Theorem 1.10, Corollary $2, S$ is a basis for V, therefore, S cannot be linearly dependent.
(9) False. A plane in \mathbb{R}^{3} that PASSES THROUGH the origine is a two-dimensional subspace.
(10) False. If A is $m \times n$ and $\operatorname{rank} A=m$, then $\operatorname{range}(T)=\mathbb{R}^{m}, m \leq n$, and the linear transformation $x \in \mathbb{R}^{n} \mapsto A x \in \mathbb{R}^{m}$ is onto. T is one-to-one if we also have $m=n$ since, by Theorem 2.3, nullity $(T)=n-\operatorname{rank}(T)=n-m=0$.

Problem 2.

(1) To find x whose image under T is b, solve $A x=b$ or

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
-5 & 10 & -15
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{2}{-10}
$$

Note that the augmented matrix

$$
\left(\begin{array}{cccc}
1 & -2 & 3 & 2 \\
-5 & 10 & -15 & -10
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We have

$$
x_{1}=2 x_{2}-3 x_{3}+2, \quad x_{2} \text { and } x_{3} \text { are free. }
$$

Let $x_{2}=x_{3}=0$. Then $x_{1}=2$. We have

$$
x=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)
$$

whose image under T is b
(2) Since free variables exist, there is more that one x for which $T(x)=b$.
(3) To determine if c is in the range of the transformation T, we consider whether $A x=c$ is consistent. Note that the augmented matrix

$$
\left(\begin{array}{cccc}
1 & -2 & 3 & 3 \\
-5 & 10 & -15 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then c is not in the range of T.
(4) To find the null space of T, row reduce the augmented matrix corresponding to $A x=0$

$$
\left(\begin{array}{cccc}
1 & -2 & 3 & 0 \\
-5 & 10 & -15 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We have

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{2}-3 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)
$$

Then

$$
\text { the null space of } T=\operatorname{span}\left\{\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

The range of T is the column space of A and we have

$$
\text { the range of } T=\operatorname{span}\{\text { pivot columns of } A\}=\operatorname{span}\left\{\binom{1}{-5}\right\}
$$

(5) The nullity of T is 2 and the rank of T is 1 , we have

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}\left(\mathbb{R}^{3}\right)=3
$$

Then, the dimension theorem is verified.

Name and ID:

Problem 3.

Let $\gamma=\left\{1, x, x^{2}\right\}$ be the standard ordered basis for $P_{2}(\mathbb{R})$. We have the coordinate vectors of $\beta=\left\{1-t, 2-t+t^{2}, 2 t+3 t^{2}\right\}$ in γ as:

$$
[1-t]_{\gamma}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad\left[2-t+t^{2}\right]_{\gamma}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right), \quad\left[2 t+3 t^{2}\right]_{\gamma}=\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right)
$$

Row reduce the matrix with the coordinate vectors as columns

$$
\left(\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & 2 \\
0 & 1 & 3
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

By the inverse matrix theorem, $\left\{[1-t]_{\gamma},\left[2-t+t^{2}\right]_{\gamma},\left[2 t+3 t^{2}\right]_{\gamma}\right\}$ is linearly independent. By Thorem 2.21, β is linearly independent. Combined with the fact that $|\beta|=\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3$, β is a basis for $P_{2}(\mathbb{R})$.

Problem 4. (BONUS PROBLEM)

Let c_{1}, \cdots, c_{p} such that

$$
\begin{equation*}
c_{1} T\left(v_{1}\right)+\cdots+c_{p} T\left(v_{p}\right)=0 \tag{1}
\end{equation*}
$$

T being linear implies from (1) that

$$
\begin{equation*}
c_{1} T\left(v_{1}\right)+\cdots+c_{p} T\left(v_{p}\right)=T\left(c_{1} v_{1}+\cdots+c_{p} v_{p}\right)=0 \tag{2}
\end{equation*}
$$

T being one-to-one implies from (2) that

$$
\begin{equation*}
c_{1} v_{1}+\cdots+c_{p} v_{p}=0 \tag{3}
\end{equation*}
$$

$\left\{v_{1}, \cdots, v_{p}\right\}$ being linearly independent implies from (3) that

$$
\begin{equation*}
c_{1}=\cdots=c_{p} . \tag{4}
\end{equation*}
$$

Therefore, from (1) and (4), $\left\{T\left(v_{1}\right), \cdots, T\left(v_{p}\right)\right\}$ is linearly independent.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.

