Name and ID: $_$

- 15 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case). Let v_1, \dots, v_p be vectors in a non-zero finite-dimensional vector space V, and $S = \{v_1, \dots, v_p\}$.
 - (1) The set of all linear combinations of v_1, \dots, v_p is a vector space.
 - (2) If $\{v_1, \dots, v_{p-1}\}$ spans V, then S spans V.
 - (3) If $\{v_1, \dots, v_{p-1}\}$ is linearly independent, then so is S.
 - (4) If S is linearly independent, then S is a basis for V.
 - (5) If S is linearly independent, then $\dim V \ge p$.
 - (6) If $V = \text{span}\{S\}$, then some subset of S is a basis for V.
 - (7) If $V = \operatorname{span}\{S\}$, then $\dim V \leq p$.
 - (8) If $\dim V = p$ and $V = \operatorname{span}\{S\}$, then S cannot be linearly dependent.
 - (9) A plane in \mathbb{R}^3 is a two-dimensional subspace.
 - (10) If A is $m \times n$ and rankA = m, then the linear transformation $x \mapsto Ax$ is one-to-one.

15 points 2. Let

$$A = \begin{pmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ -10 \end{pmatrix}, \quad c = \begin{pmatrix} 3 \\ 0 \end{pmatrix}.$$

Define a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ by T(x) = Ax for every $x \in \mathbb{R}^3$.

- (1) Find an x in \mathbb{R}^3 whose image under T is b.
- (2) Is there more than one x under T whose image is b.
- (3) Determine if c is in the range of the transformation T.
- (4) Find the null space and the range of T.
- (5) Find the nullity and rank of T and verify the dimension theorem.

10 points 3. Use coordinate vectors to determine if

$$\beta = \{1 - t, 2 - t + t^2, 2t + 3t^2\}$$

is a basis for $P_2(\mathbb{R})$.

10 points 4. (BONUS PROBLEM) Let V and W be vector spaces, let $T: V \to W$ be a linear transformation, and let $\{v_1, \dots, v_p\}$ be a subset of V. Suppose that T is one-to-one transformation, so that T(u) = T(v) always implies u = v. Show that if $\{v_1, \dots, v_p\}$ is linearly independent in V, then the set $\{T(v_1), \dots, T(v_p)\}$ is linearly independent in W.

Name and ID: _____ Problem 1. Problem 1.

- (1) True. span{S} = {all linear combinations of v_1, \dots, v_p } is a subspace of V.
- (2) True. span{ v_1, \dots, v_{p-1} } \subseteq span{S} $\subseteq V$. If span{ v_1, \dots, v_{p-1} } = V, then span{S} = V.
- (3) False. If $\{v_1, \dots, v_{p-1}\}$ is linearly independent, then so is S only provided that $v_p \notin \text{span}\{v_1, \dots, v_{p-1}\}$.
- (4) False. If S is linearly independent, then S is a basis for V only provided that $V = \text{span}\{S\}$.
- (5) True. If S is linearly independent, then, by Theorem 1.11, $\dim V \ge p$.
- (6) True. If $V = \text{span}\{S\}$, then, by Theorem 1.9, some subset of S is a basis for V.
- (7) True. If $V = \text{span}\{S\}$, then, by Theorem 1.9, $\dim V \leq p$.
- (8) True. If $\dim V = p$ and $V = \operatorname{span}\{S\}$, then, by Theorem 1.10, Corollary 2, S is a basis for V, therefore, S cannot be linearly dependent.
- (9) False. A plane in \mathbb{R}^3 that PASSES THROUGH the origine is a two-dimensional subspace.
- (10) False. If A is $m \times n$ and rank A = m, then range $(T) = \mathbb{R}^m$, $m \leq n$, and the linear transformation $x \in \mathbb{R}^n \mapsto Ax \in \mathbb{R}^m$ is onto. T is one-to-one if we also have m = n since, by Theorem 2.3, nullity $(T) = n \operatorname{rank}(T) = n m = 0$.

Problem 2.

(1) To find x whose image under T is b, solve Ax = b or

$$\begin{pmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -10 \end{pmatrix}$$

Note that the augmented matrix

$$\begin{pmatrix} 1 & -2 & 3 & 2 \\ -5 & 10 & -15 & -10 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

We have

 $x_1 = 2x_2 - 3x_3 + 2$, x_2 and x_3 are free.

Let $x_2 = x_3 = 0$. Then $x_1 = 2$. We have

$$x = \begin{pmatrix} 2\\0\\0 \end{pmatrix}$$

whose image under T is b

- (2) Since free variables exist, there is more that one x for which T(x) = b.
- (3) To determine if c is in the range of the transformation T, we consider whether Ax = c is consistent. Note that the augmented matrix

$$\begin{pmatrix} 1 & -2 & 3 & 3 \\ -5 & 10 & -15 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Then c is not in the range of T.

(4) To find the null space of T, row reduce the augmented matrix corresponding to Ax = 0

$$\begin{pmatrix} 1 & -2 & 3 & 0 \\ -5 & 10 & -15 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

We have

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_2 - 3x_3 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

the null space of $T = \text{span} \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \right\}$

Then

The range of T is the column space of A and we have

the range of
$$T = \text{span} \{ \text{pivot columns of } A \} = \text{span} \left\{ \begin{pmatrix} 1 \\ -5 \end{pmatrix} \right\}$$

(5) The nullity of T is 2 and the rank of T is 1, we have

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(\mathbb{R}^3) = 3.$$

Then, the dimension theorem is verified.

Name and ID: ____ **Problem 3.**

Let $\gamma = \{1, x, x^2\}$ be the standard ordered basis for $P_2(\mathbb{R})$. We have the coordinate vectors of $\beta = \{1 - t, 2 - t + t^2, 2t + 3t^2\}$ in γ as:

$$[1-t]_{\gamma} = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}, \quad [2-t+t^2]_{\gamma} = \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}, \quad [2t+3t^2]_{\gamma} = \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix}$$

Row reduce the matrix with the coordinate vectors as columns

$$\begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 2 \\ 0 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

By the inverse matrix theorem, $\{[1-t]_{\gamma}, [2-t+t^2]_{\gamma}, [2t+3t^2]_{\gamma}\}$ is linearly independent. By Thorem 2.21, β is linearly independent. Combined with the fact that $|\beta| = \dim(P_2(\mathbb{R})) = 3$, β is a basis for $P_2(\mathbb{R})$.

Problem 4. (BONUS PROBLEM)

Let c_1, \dots, c_p such that

$$c_1 T(v_1) + \dots + c_p T(v_p) = 0.$$
 (1)

T being linear implies from (1) that

$$c_1 T(v_1) + \dots + c_p T(v_p) = T(c_1 v_1 + \dots + c_p v_p) = 0.$$
 (2)

T being one-to-one implies from (2) that

$$c_1 v_1 + \dots + c_p v_p = 0 \tag{3}$$

 $\{v_1, \cdots, v_p\}$ being linearly independent implies from (3) that

$$c_1 = \dots = c_p. \tag{4}$$

Therefore, from (1) and (4), $\{T(v_1), \dots, T(v_p)\}$ is linearly independent.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.