Quiz 5

Name and ID: .

- 10 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case).
 - (1) Every linear operator on an n-dimensional vector space has n distinct eigenvalues.
 - (2) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.
 - (3) The sum of two eigenvectors of a linear operator T is always an eigenvector of T.
 - (4) Any linear operator on an n-dimensional vector space that has fewer than n distinct eigenvalues is not diagonalizable.
 - (5) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - (6) If λ is an eigenvalue of a linear operator T, then each vector in E_{λ} is an eigenvector of T.
 - (7) If λ_1 and λ_2 are distinct eigenvalues of a linear operator T, then $E_{\lambda_1} \cap E_{\lambda_2} = \{0\}$.
 - (8) Let $A \in M_{n \times n}(F)$ and $\beta = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for F^n consisting of eigenvectors of A. If Q is the $n \times n$ matrix whose jth column is v_j $(1 \le j \le n)$, then $Q^{-1}AQ$ is a diagonal matrix.
 - (9) A linear operator T on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue λ equals the dimension of E_{λ} .
 - (10) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.
- 10 points 2. Prove that similar matrices have the same characteristic polynomial and hence the same eigenvalues.
- $\frac{10 \text{ points}}{A}$ 3. Prove that the eigenvalues of an upper triangular matrix A are the diagonal entries of A.
- 10 points 4. For $A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$, find an expression for A^n , where *n* is an arbitrary positive integer.
- 10 points 5. (BONUS PROBLEM) Let $A \in M_{n \times n}(F)$ be invertible. Prove that if A is diagonalizable, then A^{-1} is also diagonalizable.

Name and ID: A Problem 1.

- (1) False. For example, the identity mapping I has only one (distinct) eigenvalue 1 (with multiplicity n).
- (2) False. For example, the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ has two eigenvalues 1 and 2, the sum 3 is not an eigenvalue of the same matrix.
- (3) False. For example, the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ has two eigenvectors $(1,0)^t$ and $(0,1)^t$, the sum $(1,1)^t$ is not an eigenvector of the same matrix.
- (4) False. For example, the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has only one (distinct) eigenvalue but it is diagonalizable.
- (5) False. For example, the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has two linearly independent eigenvectors $(1,0)^t$ and $(0,1)^t$ corresponding to the same eigenvalue 1.
- (6) False. The zero vector 0 (in E_{λ}) is not an eigenvector
- (7) True. If $v \in E_{\lambda_1} \cap E_{\lambda_2}$ with $\lambda_1 \neq \lambda_2$, then $T(v) = \lambda_1 v = \lambda_2 v$, thus $(\lambda_1 \lambda_2)v = 0$, implying v = 0.
- (8) True. Let $Q = (v_1, \dots, v_n)$ be the $n \times n$ matrix whose *j*th column is v_j $(1 \le j \le n)$ such that $Av_j = \lambda_j v_j$, then $AQ = A(v_1, \dots, v_n) = (Av_1, \dots, Av_n) = (\lambda_1 v_1, \dots, \lambda_n v_n) = (v_1, \dots, v_n) \operatorname{diag}(\lambda_1, \dots, \lambda_n) = QD$ with $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Therefore, $Q^{-1}AQ = D$ is a diagonal matrix.
- (9) False. The test for diagonalization requires that the characteristic polynomial of T splits.
- (10) True. Let T be a diagonalization linear operator on a nonzero vector space. The characteristic polynomial of T has a degree greater than or equal to one and splits, thus has at least one root. Hence T has at least one eigenvalue.

Problem 2.

Let A and B be similar, i.e., $\exists Q$ invertible such that $B = Q^{-1}AQ$. Note that $\det(Q^{-1}) = (\det(Q))^{-1}$. We have

$$p_B(\lambda) = \det(B - \lambda I_n) = \det(Q^{-1}AQ - \lambda I_n) = \det(Q^{-1}AQ - \lambda Q^{-1}I_nQ)$$

=
$$\det(Q^{-1}(A - \lambda I_n)Q) = \det(Q^{-1})\det(A - \lambda I_n)\det(Q)$$

=
$$\det(A - \lambda I_n)(\det(Q))^{-1}\det(Q) = \det(A - \lambda I_n) = p_A(\lambda).$$

Thus A and B have the same characteristic polynomial (and hence the same eigenvalues).

Name and ID: $_$

Problem 3.

Let A be an upper triangular matrix. Notice that λI_n is also an upper triangular matrix, thus $A - \lambda I_n$ is upper triangular. From problem 4.2.23 (which we proved on a previous homework) we know that det $(A - \lambda I_n)$, the determinant of an upper triangular matrix, is the product of the diagonal entries, giving

$$p(\lambda) = \det(A - \lambda I_n) = \prod_{i=1}^n (a_{ii} - \lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda)$$

where a_{ii} are the diagonal entries of A. This is the characteristic polynomial of A and its roots are a_{ii} for all i. Thus the eigenvalues of A are its diagonal entries.

Problem 4.

Note that the characteristic polynomial of A is

$$p_A(\lambda) = \det(A - \lambda I_2) = \lambda^2 - \operatorname{trace}(A)\lambda + \det(A) = \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1).$$

Then A has two distinct eigenvalues 5 and -1, thus is diagonalizable. Note that $(1,1)^t$ is an eigenvector corresponding to the eigenvalue 5 and $(-1,2)^5$ an eigenvector corresponding to the eigenvalue -1. We have

$$Q^{-1}AQ = D$$
 with $D = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$.

Note that $Q^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$. So we have

$$\begin{aligned} A^n &= QD^nQ^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5^n & 0 \\ 0 & (-1)^n \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 2 \cdot 5^n + (-1)^n & 5^n + (-1)^{n+1} \\ 2 \cdot 5^n + 2 \cdot (-1)^{n+1} & 5^n + 2 \cdot (-1)^n \end{pmatrix}. \end{aligned}$$

Name and ID: $_$

Problem 5. (BONUS PROBLEM)

Note that $(BC)^{-1} = C^{-1}B^{-1}$ for any invertible matrices B and C. If A is diagonalizable, then there is an invertible matrix Q and a diagonal matrix D such that $D = Q^{-1}AQ$. Taking the inverse on both sides gives

$$D^{-1} = (Q^{-1}AQ)^{-1} = (Q)^{-1} (A)^{-1} (Q^{-1})^{-1} = Q^{-1}A^{-1}Q$$

since $(Q^{-1})^{-1} = Q$. Therefore, A^{-1} is diagonalizable.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.