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Linear Combinations

Definition

Let V be a vector space and S a nonempty subset of V . A vector
v ∈ V is called a linear combination of vectors of S if there exist
a finite number of vectors u1, u2, · · · , un in S and scalars a1, a2,
· · · , an in F such that

v = a1u1 + a2u2 + · · ·+ anun.

In this case we also say that v is a linear combination of u1, u2,
· · · , un and call a1, a2, · · · , an the coefficients of the linear
combination

Note that 0v = 0 for each v ∈ V , so the zero vector is a linear
combination of any nonempty subset of V .
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Linear Combinations of Vectors in R2

Parallelogram Rule for Addition of Two Vectors

If u and v in R2 are represented as points in the plane, then u + v
corresponds to the fourth vertex of the parallelogram whose other
vertices are 0, u and v.

Geometric Description of R2

Vector

[
x1
x2

]
is the point

(x1, x2) in the plane. R2 is the
set of all points in the plane.

Example

Let u =

[
1
3

]
and v =

[
2
1

]
.

Graphs of u, v and u + v are:
(Parallelogram Rule)
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Linear Combinations of Vectors in R2 (cont.)

Example

Let u =

[
1
2

]
.

Express u, 2u, and −3
2 u

on a graph.

Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, 2015 5 / 30



1.4 Linear Combinations Reduction Span Determining Subspaces

Linear Combinations of Vectors in R2: Example

Example

Let v1 =

[
2
1

]
and v2 =

[
−2

2

]
. Express each of the

following as a linear combination of v1 and v2:

a =

[
0
3

]
, b =

[
−4

1

]
, c =

[
6
6

]
, d =

[
7
−4

]
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Linear Combinations: Example

Example

Let a1 =

 1
0
3

, a2 =

 4
2

14

, a3 =

 3
6

10

, and b =

 −1
8
−5

.

Determine if b is a linear combination of a1, a2, and a3.

Solution: Vector b is a linear combination of a1, a2, and a3 if can
we find weights x1, x2, x3 such that

x1a1 + x2a2 + x3a3 = b.

Vector Equation (fill-in):

x1

 1
0
3

+ x2

 4
2

14

+ x3

 3
6

10

 =

 −1
8
−5


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Linear Combinations: Example (cont.)

Corresponding System:

x1 + 4x2 + 3x3 = −1
2x2 + 6x3 = 8

3x1 + 14x2 + 10x3 = −5

Corresponding Augmented Matrix:

 1 4 3 −1
0 2 6 8
3 14 10 −5

 ∼

 1 0 0 1
0 1 0 −2
0 0 1 2

 =⇒
x1 =
x2 =
x3 =
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Linear Combinations: Review

Review of the last example: a1, a2, a3 and b are columns of
the augmented matrix  1 4 3 −1

0 2 6 8
3 14 10 −5


↑ ↑ ↑ ↑
a1 a2 a3 b

Solution to

x1a1 + x2a2 + x3a3 = b

is found by solving the linear system whose augmented matrix is[
a1 a2 a3 b

]
.
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Linear Combinations and Vector Equation

Vector Equation

A vector equation

x1a1 + x2a2 + · · ·+ xnan = b

has the same solution set as the linear system whose augmented
matrix is [

a1 a2 · · · an b
]
.

In particular, b can be generated by a linear combination of
a1, a2, . . . , an if and only if there is a solution to the linear system
corresponding to the augmented matrix.
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Solving a System of Linear Equations

Example

Solving a System in Matrix Form
x1 − 2x2 = −1
−x1 + 3x2 = 3

[
1 −2 −1
−1 3 3

]
(augmented matrix)

↓

x1 − 2x2 = −1
x2 = 2

[
1 −2 −1
0 1 2

]
↓

x1 = 3
x2 = 2

[
1 0 3
0 1 2

]
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Row Operations

Elementary Row Operations

1 (Replacement) Add one row to a multiple of another row.

2 (Interchange) Interchange two rows.

3 (Scaling) Multiply all entries in a row by a nonzero constant.

Row Equivalent Matrices

Two matrices where one matrix can be transformed into the other
matrix by a sequence of elementary row operations.

Fact about Row Equivalence

If the augmented matrices of two linear systems are row
equivalent, then the two systems have the same solution set.
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Solving a System by Row Eliminations: Example

Example (Row Eliminations to a Triangular Form)

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

 1 −2 1 0
0 2 −8 8
−4 5 9 −9


↓

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

− 3x2 + 13x3 = −9

 1 −2 1 0
0 2 −8 8
0 −3 13 −9


↓

x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

− 3x2 + 13x3 = −9

 1 −2 1 0
0 1 −4 4
0 −3 13 −9


↓

x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

x3 = 3

 1 −2 1 0
0 1 −4 4
0 0 1 3


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Solving a System by Row Eliminations: Example (cont.)

Example (Row Eliminations to a Diagonal Form)

x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

x3 = 3

 1 −2 1 0
0 1 −4 4
0 0 1 3


↓

x1 − 2x2 = −3
x2 = 16

x3 = 3

 1 −2 0 −3
0 1 0 16
0 0 1 3


↓

x1 = 29
x2 = 16

x3 = 3

 1 0 0 29
0 1 0 16
0 0 1 3


Solution: (29, 16, 3)
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Solving a System by Row Eliminations: Example (cont.)

Example (Check the Answer)

Is (29, 16, 3) a solution of the original system?

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

(29)− 2(16)+ (3) = 29− 32 + 3 = 0
2(16)− 8(3) = 32− 24 = 8

−4(29) + 5(16) + 9(3) = −116 + 80 + 27 = −9
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Span of a Set of Vectors: Examples

Example

Let v =

 3
4
5

 .

Label the origin

 0
0
0


together with

v, 2v and 1.5v

on the graph.
v, 2v and 1.5v all lie on the same line.

Span{v} is the set of all vectors of the form cv.
Here, Span{v} = a line through the origin.
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Span of a Set of Vectors: Examples (cont.)

Example

Label
u, v, u + v and 3u+4v
on the graph.

u, v, u + v and 3u+4v all lie in the
same plane.

Span{u, v} is the set of all vectors of the form x1u + x2v.
Here, Span{u, v} = a plane through the origin.
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Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose v1, v2, . . . , vp are in Rn; then

Span{v1, v2, . . . , vp} = set of all linear combinations of
v1, v2, . . . , vp.

Span of a Set of Vectors (Stated another way)

Span{v1, v2, . . . , vp} is the collection of all vectors that can be
written as

x1v1 + x2v2 + · · ·+ xpvp

where x1, x2, . . . , xp are scalars.
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Span of a Set of Vectors in R2

Example

Let v1 =

[
2
1

]
and v2 =

[
4
2

]
.

(a) Find a vector in Span{v1, v2}.
(b) Describe Span{v1, v2} geometrically.
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Spanning Sets in R3

Example

v2 is a multiple of v1

Span{v1, v2} =Span{v1}

=Span{v2}

(line through the origin)
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Spanning Sets in R3 (cont.)

Example

Let v1 =

 4
2
2


and v2 =

 6
3
3

.

Is Span{v1, v2} a line or a
plane?

v2 is not a multiple of v1
Span{v1, v2} =plane through the origin
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Spanning Sets

Example

Let A =

 1
3
0

2
1
5

 and b =

 8
3
17

. Is b in the plane

spanned by the columns of A?

Solution: ? Do x1 and x2 exist so that

x1

 1
3
0

+ x2

 2
1
5

 =

 8
3
17


Corresponding augmented matrix: 1 2 8

3 1 3
0 5 17

 ∼

 1 2 8
0 −5 −21
0 5 17

 ∼

 1 2 8
0 −5 −21
0 0 −4


So b is not in the plane spanned by the columns of A
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A Shortcut for Determining Subspaces

Theorem (1)

If v1, . . . , vp are in a vector space V , then Span{v1, . . . , vp} is a
subspace of V .

Proof: In order to verify this, check properties a, b and c of
definition of a subspace.

a. 0 is in Span{v1, . . . , vp} since

0 = v1 + v2 + · · ·+ vp

b. To show that Span{v1, . . . , vp} closed under vector addition, we
choose two arbitrary vectors in Span{v1, . . . , vp} :

u =a1v1 + a2v2 + · · ·+ apvp

and

v =b1v1 + b2v2 + · · ·+ bpvp.
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A Shortcut for Determining Subspaces (cont.)

Then

u + v = (a1v1 + a2v2 + · · ·+ apvp) + (b1v1 + b2v2 + · · ·+ bpvp)

= ( v1 + v1) + ( v2 + v2) + · · ·+ ( vp + vp)

= (a1 + b1) v1 + (a2 + b2) v2 + · · ·+ (ap + bp) vp.

So u + v is in Span{v1, . . . , vp} .

c. To show that Span{v1, . . . , vp} closed under scalar
multiplication, choose an arbitrary number c and an arbitrary
vector in Span{v1, . . . , vp} :

v =b1v1 + b2v2 + · · ·+ bpvp.
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A Shortcut for Determining Subspaces (cont.)

Then

cv =c (b1v1 + b2v2 + · · ·+ bpvp)

= v1 + v2 + · · ·+ vp

So cv is in Span{v1, . . . , vp} .

Since properties a, b and c hold, Span{v1, . . . , vp} is a subspace of
V .
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Determining Subspaces: Recap

Recap

1 To show that H is a subspace of a vector space, use Theorem
1.

2 To show that a set is not a subspace of a vector space, provide
a specific example showing that at least one of the axioms a,
b or c (from the definition of a subspace) is violated.
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Determining Subspaces: Example

Example

Is V = {(a + 2b, 2a− 3b) : a and b are real} a subspace of R2?
Why or why not?

Solution: Write vectors in V in column form:[
a + 2b

2a− 3b

]
=

[
a

2a

]
+

[
2b
−3b

]

=

[
1
2

]
+

[
2
−3

]
So V =Span{v1, v2} and therefore V is a subspace of by
Theorem 1.
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Determining Subspaces: Example

Example

Is H =


 a + 2b

a + 1
a

 : a and b are real

 a subspace of R3?

Why or why not?

Solution: 0 is not in H since a = b = 0 or any other combination
of values for a and b does not produce the zero vector. So
property fails to hold and therefore H is not a subspace of R3.
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Determining Subspaces: Example

Example

Is the set H of all matrices of the form

[
2a b

3a + b 3b

]
a subspace

of M2×2? Explain.

Solution: Since[
2a b

3a + b 3b

]
=

[
2a 0
3a 0

]
+

[
0 b
b 3b

]

= a

[ ]
+ b

[ ]
.

Therefore H =Span

{[
2 0
3 0

]
,

[
0 1
1 3

]}
and so H is a

subspace of M2×2.
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Spanning Sets

Theorem (1.5)

The span of any subset S of a vector space V is a subspace of V .
Moreover, any subspace of V that contains S must also contain
the span of S.

Definition

The subspace spanned (or subspace generated) by a nonempty
set S of vectors in V is the set of all linear combinations of vectors
from S :

< S >= span(S) = {c1v1 + · · ·+ cnvn | ci ∈ F , vi ∈ S}

When S = {v1, · · · , vn} is a finite set, we use the notation
< v1, · · · , vn > or span(v1, · · · , vn). A set S of vectors in V is
said to span V , or generate V , if V = span(S).
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