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1.4 Linear Combinations
Linear Combinations

Definition

Let V be a vector space and S a nonempty subset of V. A vector
v € V is called a linear combination of vectors of S if there exist
a finite number of vectors uy, uy, ---, u, in S and scalars ag, as,
---, a, in F such that

vV = aiju; + auz + -+ - + apu,.

In this case we also say that v is a linear combination of uy, uy,
-, u, and call a1, ap, ---, a, the coefficients of the linear
combination

Note that Ov = 0 for each v € V/, so the zero vector is a linear
combination of any nonempty subset of V. Illl
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1.4 Linear Combinations

Linear Combinations of Vectors in R?

Parallelogram Rule for Addition of Two Vectors

If u and v in R? are represented as points in the plane, then u+ v
corresponds to the fourth vertex of the parallelogram whose other
vertices are 0, u and v.

Geometric Description of R?

Vector [ 5l ] is the point = ’
X2
(x1,x2) in the plane. R? is the 3 ¢
set of all points in the plane. 2
1 »e
1 2 1 2 3 a ™
Let u = and v = .
3 1 (Parallelogram Rule) lﬂl

Graphs of u,v and u + v are:
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1.4 Linear Combinations

Linear Combinations of Vectors in R? (cont.)

x2
4
3
2
1
Let u= : 1
2
Express u, 2u, and %3u X1
on a graph. B -2 : ]
1
2

e
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1.4 Linear Combinations

Linear Combinations of Vectors in R?; Example

Let vi = [ i ] and vo = [ _g ] Express each of the

following as a linear combination of v; and vs:

=3 ] o=[ 4] e [5] 0= [ 1]

X2

N A o ©
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1.4 Linear Combinations
Linear Combinations: Example

1 4 3 -1
Let a; = 0 [,a= 2 |,a3 = 6 |,and b= 8
3 14 10 -5

Determine if b is a linear combination of a;, a», and as.

Solution: Vector b is a linear combination of ay, a, and a3 if can
we find weights x3, x2, x3 such that

X1a1 + Xoa2 + x3a3 = b.

Vector Equation (fill-in):

1 4 3 -1
x| 0| +x 2 | +x3 6 = 8
3 14 10 -5 L]
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1.4 Linear Combinations

Linear Combinations: Example (cont.)

Corresponding System:

x1 + 4x 4+ 3x3 = -1
2% 4+ bx3 = 8
3x1 + 1l4x, + 10x3 = -5

Corresponding Augmented Matrix:

1 4 3 -1 100 1 X1 =
0 2 6 8 ~1010 -2 = Xo = ___
3 14 10 -5 001 2 X3 = ___
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1.4 Linear Combinations

Linear Combinations: Review

Review of the last example: a;j, ap, a3z and b are columns of
the augmented matrix

1 4 3 -1
0 2 6 8
3 14 10 -5
T Tt

d; 4dz as b

Solution to

xi1a1 + xpar +x3a3 =Db

is found by solving the linear system whose augmented matrix is

[ay a, a3 b . [lll
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1.4 Linear Combinations

Linear Combinations and Vector Equation

Vector Equation

A vector equation
xja1 +xpa2 + -+ xpap=b

has the same solution set as the linear system whose augmented
matrix is

[ap a -+ a, b].

In particular, b can be generated by a linear combination of
ai,as,...,a, if and only if there is a solution to the linear system
corresponding to the augmented matrix.
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1.4 Linear Combinations

Solving a System of Linear Equations

Solving a System in Matrix Form
X1 — 2X2 = —1 1 —2 —1
—x1 + 3x = 3 -1 3 3
(augmented matrix)
{
X1 — 2X2 = -1 1 —2 -1
Xp = 2 0 1 2
i)
X1 = 3 1 0 3
X = 2 0 1 2
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1.4 Linear Combinations
Row Operations

Elementary Row Operations

@ (Replacement) Add one row to a multiple of another row.
@ (Interchange) Interchange two rows.

@ (Scaling) Multiply all entries in a row by a nonzero constant.

Row Equivalent Matrices

Two matrices where one matrix can be transformed into the other
matrix by a sequence of elementary row operations.

Fact about Row Equivalence

If the augmented matrices of two linear systems are row
equivalent, then the two systems have the same solution set.
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1.4 Linear Combinations

Solving a System by Row Eliminations: Example

Example (Row Eliminations to a Triangular Form)

X1 — 2x0 + X3 = 0 1 -2 1 0
2xp — 8xz3 = 8 0O 2 -8 8
—4X1 -+ 5X2 -+ 9X3 = -9 —4 5 9 -9
i\
X1 — 2x + X3 = 0 (1 -2 1 0]
2X2 — 8X3 = 8 0 2 -8 8
~ 3% + 13 = -9 |0 -3 13 -9 |
1
X1 — 2x + X3 = 0 (1 -2 1 0]
X2 — 4X3 = 4 0 1 —4 4
~ 3% + 13 = -9 |0 -3 13 -9 |
1
x1 — 2x + x3 = 0 1 -2 1 0
x2 — 4x3 = 4 0 1 -4 4 [l].l
x3 = 3 0 0 1 3
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1.4 Linear Combinations

Solving a System by Row Eliminations: Example (cont.)

Example (Row Eliminations to a Diagonal Form)

X1 — 2x + x3 = 0 1 -2 1 0
X2  — 4-X3 = 4 0 1 —4 4
x3 = 3 0 0 1 3
1
X1 - 2X2 = -3 1 -2 0 -3
X2 = 16 0 1 0 16
X3 = 3 0 01 3
1
X1 = 29 1 0 0 29
X2 = 16 0 1 0 16
x3 = 3 001 3
Solution: (29,16, 3) [lll
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1.4 Linear Combinations

Solving a System by Row Eliminations: Example (cont.)

Example (Check the Answer)

Is (29,16, 3) a solution of the original system?
X1 — 2x + X3 = 0
2X2 — 8X3 = 8
—4x1 + 5% + 9x3 = -9
(29) — 2(16)+  (3) —29-32+3 = 0
2(16) —8(3) = 32-24 ~ 8
—4(29) +5(16) +9(3) =-116+80+27 = -9
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1.4 Linear Combinations
Span of a Set of Vectors: Examples

Example 3
L]

3
Letv=| 4 |. .
5
0
Label the origin | 0
0
together with
v, 2v and 1.5v X 2
on the graph. v, 2v and 1.5v all lie on the same line.

Span{v} is the set of all vectors of the form cv.
Here, Span{v} = a line through the origin. ’[lll
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1.4 Linear Combinations

Span of a Set of Vectors: Examples (cont.)

X3

Label
u, v, u+ v and 3u+4v
on the graph.

X2
X1

u, v, u+ v and 3u+4v all lie in the

same plane.
Span{u, v} is the set of all vectors of the form xju + xov.
Here, Span{u,v} = a plane through the origin. [lll
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1.4 Linear Combinations

Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose vi,Va,...,V, are in R”; then
Span{vi,vy,...,v,} = set of all linear combinations of
Vi,V2,...,Vp.

Span of a Set of Vectors (Stated another way)

Span{vi,vy,...,v,} is the collection of all vectors that can be
written as

X1V1 + XoV2 + - - - + XpVp

where x1,x2,...,Xp are scalars. Illl
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1.4 Linear Combinations
Span of a Set of Vectors in R?

Letvlz[i ] andvzz[;1 }

(a) Find a vector in Span{vy,v>}.

(b) Describe Span{vi,v>} geometrically.

Jiwen He, University of Houston



1.4 Linear Combinations
Spanning Sets in R3

X3
[ J
vy is a multiple of vy
Span{vl, Vz} :Span{vl} °
V2
—Span{u,} .
V1

(line through the origin)

X2
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1.4 Linear Combinations

Spanning Sets in R® (cont.)

4
Let vi = 2
2
6
andvo = | 3
3
Is Span{vy,vz} alineora | *? v N\ x1
plane? * .

vy is not a multiple of vy
Span{vi, vy} =plane through the origin \[lll
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1.4 Linear Combinations
Spanning Sets

2
and b =

1
LetA=| 3 1
0 5
spanned by the columns of A?

Is b in the plane

Solution:

1
X1 3
0

+ X2

2

(G20

Corresponding augmented matrix:

1 2 8 1 2
31 3 |~]0 =5
0 5 17 0 5

8
-21
17

? Do x; and x» exist so that

8
=13
17
1 2 8
~[0 -5 =21
0 0 -4

So b is not in the plane spanned by the columns of A
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1.4 Linear Combinations

A Shortcut for Determining Subspaces

Ifvi,...,vp are in a vector space V, then Span{vi,...,vp} is a
subspace of V.

Proof: In order to verify this, check properties a, b and ¢ of
definition of a subspace.

a. 0isin Span{vy,...,v,} since

0= ___vi+____ Vot Vp
b. To show that Span{vy,...,v,} closed under vector addition, we
choose two arbitrary vectors in Span{vy,...,vp} :

u=avi+ava+---+ apVvp

and
vV =bivi + bovo + - - + bpvp. lﬂl
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1.4 Linear Combinations

A Shortcut for Determining Subspaces (cont.)

Then
u+v=_(avi +avo + -+ apVp) + (brvi + bovo + - - - + bpvp)
=(cvit —vi) F (vt o) e (v )

= (a1 +b1)vi+ (a2 + b)vo+ -+ (ap + bp) vp.

Sou-+visin Span{vy,...,vp}.

c. To show that Span{vy,...,vp,} closed under scalar
multiplication, choose an arbitrary number ¢ and an arbitrary
vector in Span{vy,...,vp}:

Vv =b1vi + bovo + - - + bpvp. [Fl
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1.4 Linear Combinations

A Shortcut for Determining Subspaces (cont.)

Then
cv =c (byvi + bpvp + - - - + bpvp)
= _____ Vi + Vo 4o Vp
So cv is in Span{vy,...,vp}.
Since properties a, b and ¢ hold, Span{vy,...,v,} is a subspace of
V.
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1.4 Linear Combinations
Determining Subspaces: Recap

@ To show that H is a subspace of a vector space, use Theorem
1.

@ To show that a set is not a subspace of a vector space, provide
a specific example showing that at least one of the axioms a,
b or ¢ (from the definition of a subspace) is violated.
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1.4 Linear Combinations
Determining Subspaces: Example

Is V = {(a+2b,2a —3b) : aand b are real} a subspace of R??
Why or why not?

Solution: Write vectors in V' in column form:

2] [a] 5]

So V =Span{vy, vz} and therefore V is a subspace of _____ by
Theorem 1. lﬂl
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1.4 Linear Combinations
Determining Subspaces: Example

a+2b
Is H= a+1 . aand b are real  a subspace of R3?

a
Why or why not?

Solution: 0 is not in H since a = b = 0 or any other combination
of values for a and b does not produce the zero vector. So
property _____ fails to hold and therefore H is not a subspace of R3.

L
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1.4 Linear Combinations
Determining Subspaces: Example

2a b
3a+b 3b

Is the set H of all matrices of the form [

] a subspace

of Mhy2?7 Explain.

Solution: Since
2a b | |20 n 0 b
3a4+b 3b| |32 0 b 3b

]l )

2 0 0 1 .
ThereforeH—Span{[3 0],[1 3}}andsoHlsa

subspace of Mpy». lﬂl



1.4 Linear Combinations
Spanning Sets

Theorem (1.5)

The span of any subset S of a vector space V is a subspace of V.
Moreover, any subspace of V' that contains S must also contain
the span of S.

Definition

The subspace spanned (or subspace generated) by a nonempty
set S of vectors in V is the set of all linear combinations of vectors
from S:

<S>=span(S) ={cavi+ -+ cpvn|ci€ F,vie S}

When S = {vi,---,v,} is a finite set, we use the notation
< Vi,--+,Vp > or span(vy,---,v,). Aset S of vectors in V is
said to span V , or generate V, if V = span(S). [lll
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