Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations & Systems of Linear Equations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

1.4 Linear Combinations & Systems of Linear Equations

- Linear Combinations: Definition
- Linear Combinations of Vectors in \mathbf{R}^2
- Linear Combinations and Vector Equation
- Solving a System of Linear Equations by Row Eliminations
- Span of a Set of Vectors: Definition
- Span of a Set of Vectors in \mathbf{R}^2 and in \mathbf{R}^3
- A Shortcut for Determining Subspaces
- Spanning Sets

Linear Combinations

Definition

Let V be a vector space and S a nonempty subset of V. A vector $\mathbf{v} \in V$ is called a **linear combination** of vectors of S if there exist a finite number of vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ in S and scalars a_1, a_2, \dots, a_n in F such that

$$\mathbf{v}=a_1\mathbf{u}_1+a_2\mathbf{u}_2+\cdots+a_n\mathbf{u}_n.$$

In this case we also say that **v** is a **linear combination** of \mathbf{u}_1 , \mathbf{u}_2 , \cdots , \mathbf{u}_n and call a_1 , a_2 , \cdots , a_n the **coefficients** of the linear combination

Note that $0\mathbf{v} = \mathbf{0}$ for each $\mathbf{v} \in V$, so the zero vector is a linear combination of any nonempty subset of V.

eduction Span Determining Subspace

Linear Combinations of Vectors in \mathbf{R}^2

Parallelogram Rule for Addition of Two Vectors

If **u** and **v** in **R**² are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are **0**, **u** and **v**.

1.4 Linear Combinations

duction Span Determining Subs

Linear Combinations of Vectors in \mathbf{R}^2 (cont.)

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Spring, 2015 5 /

eduction Span Determining Su

Linear Combinations of Vectors in R²: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -2\\2 \end{bmatrix}$. Express each of the following as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{a} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$$

Jiwen He, University of Houston

Linear Combinations: Example

Example

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\0\\3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 4\\2\\14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3\\6\\10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}$.
Determine if \mathbf{b} is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

Solution: Vector **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 if can we find weights x_1, x_2, x_3 such that

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}.$$

Vector Equation (fill-in):

$$x_1 \begin{bmatrix} 1\\0\\3 \end{bmatrix} + x_2 \begin{bmatrix} 4\\2\\14 \end{bmatrix} + x_3 \begin{bmatrix} 3\\6\\10 \end{bmatrix} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}$$

Linear Combinations: Example (cont.)

Corresponding System:

Corresponding Augmented Matrix:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \implies \begin{array}{c} x_1 = \dots \\ x_2 = \dots \\ x_3 = \dots \end{array}$$

Linear Combinations: Review

Review of the last example: a_1 , a_2 , a_3 and b are columns of the augmented matrix

 $\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$

Solution to

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = \mathbf{b}$$

is found by solving the linear system whose augmented matrix is

$$\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}$$
].

Linear Combinations and Vector Equation

Vector Equation

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}.$$

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

Solving a System of Linear Equations

Example

Solving a System in Matrix Form					
<i>x</i> ₁	_	$2x_2 =$	$^{-1}$	$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix}$	
$-x_{1}$	+	$3x_2 =$	3		
				(augmented matrix)	
			\downarrow		
<i>x</i> ₁	_	$2x_2 =$	-1	$\left[\begin{array}{rrrr}1 & -2 & -1\\0 & 1 & 2\end{array}\right]$	
		$x_2 =$	2		
			\downarrow		
	<i>X</i> 1	_	. 3	[1 0 3]	
	~1	x ₂ =	= 2	$ \left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
_	_	-		L J	

Row Operations

Elementary Row Operations

- (*Replacement*) Add one row to a multiple of another row.
- (Interchange) Interchange two rows.
- (Scaling) Multiply all entries in a row by a nonzero constant.

Row Equivalent Matrices

Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Spring, 2015 12 / 3

1.4 Linear Combinations

eduction Span Determining

Solving a System by Row Eliminations: Example

Example (Row Eliminations to a Triangu	ılar Form)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left[\begin{array}{rrrrr}1 & -2 & 1 & 0\\0 & 2 & -8 & 8\\-4 & 5 & 9 & -9\end{array}\right]$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} -4 & 5 & 9 & -9 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \end{bmatrix}$
$- 3x_2 + 13x_3 = -9$	$\begin{bmatrix} 0 & 2 & 0 & 0 \\ 0 & -3 & 13 & -9 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 1 & 0 \end{bmatrix}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & -3 & 13 & -9 \end{bmatrix}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left[\begin{array}{rrrrr} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \end{array}\right]$
$x_3 = 3$	

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Solving a System by Row Eliminations: Example (cont.)

Example (Row Elimina	tions to a Diagon	al Form)			
$\begin{array}{cccc} x_1 & - & 2x_2 & - & & & \\ & & & x_2 & - & & & \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$= -3$ $= 16$ $x_3 = 3$	$\left[\begin{array}{rrrrr}1 & -2 & 0 & -3\\0 & 1 & 0 & 16\\0 & 0 & 1 & 3\end{array}\right]$			
x ₁ x ₂	= 29 = 16 $x_3 = 3$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
Solution: (29, 16, 3)					
		《曰》《國》《臣》《臣》 []]			

屮

Solving a System by Row Eliminations: Example (cont.)

Example (Check the Answer) Is (29, 16, 3) a solution of the **original** system? $-4x_1 + 5x_2 + 9x_3 = -$.9 -4(29) + 5(16) + 9(3) = -116 + 80 + 27 = -9

Spring, 2015 15

- < A > < B > < B >

1.4 Linear Combinations

duction Span Determining Subspaces

Span of a Set of Vectors: Examples

1.4 Linear Combinations

eduction Span Determining Subspaces

Span of a Set of Vectors: Examples (cont.)

u, **v**, **u** + **v** and $3\mathbf{u}+4\mathbf{v}$ all lie in the same plane.

Span{ \mathbf{u}, \mathbf{v} } is the set of all vectors of the form $x_1\mathbf{u} + x_2\mathbf{v}$. Here, **Span**{ \mathbf{u}, \mathbf{v} } = a plane through the origin.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Spring, 2015 1

17 / 30

머

Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbf{R}^n ; then

$$\begin{split} \textbf{Span}\{\textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_p\} &= \text{set of all linear combinations of} \\ \textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_p. \end{split}$$

Span of a Set of Vectors (Stated another way)

 $\pmb{\mathsf{Span}}\{\pmb{\mathsf{v}}_1,\pmb{\mathsf{v}}_2,\ldots,\pmb{\mathsf{v}}_p\}$ is the collection of all vectors that can be written as

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_p\mathbf{v}_p$$

where x_1, x_2, \ldots, x_p are scalars.

Span of a Set of Vectors in \mathbb{R}^{2}

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 4\\2 \end{bmatrix}$.

(a) Find a vector in **Span**{ $\mathbf{v}_1, \mathbf{v}_2$ }.

(b) Describe $\textbf{Span}\{\textbf{v}_1,\textbf{v}_2\}$ geometrically.

Spanning Sets in \mathbf{R}^3

Spanning Sets in \mathbf{R}^3 (cont.)

v_2 is **not** a multiple of v_1 **Span**{ v_1, v_2 } =plane through the origin

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

pring, 2015 21 /

イロト イポト イヨト イヨト

X1

Spanning Sets

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Is \mathbf{b} in the plane spanned by the columns of A ?

Solution: ? Do x_1 and x_2 exist so that

$$x_1 \begin{bmatrix} 1\\3\\0 \end{bmatrix} + x_2 \begin{bmatrix} 2\\1\\5 \end{bmatrix} = \begin{bmatrix} 8\\3\\17 \end{bmatrix}$$

Corresponding augmented matrix:

$$\begin{bmatrix} 1 & 2 & 8 \\ 3 & 1 & 3 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 0 & -4 \end{bmatrix}$$

So **b** is not in the plane spanned by the columns of A

A Shortcut for Determining Subspaces

Theorem (1)

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in a vector space V, then $Span\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof: In order to verify this, check properties a, b and c of definition of a subspace.

a. **0** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ since

$$\mathbf{0} = \dots \mathbf{v}_1 + \dots \mathbf{v}_2 + \dots + \dots \mathbf{v}_p$$

b. To show that Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } closed under vector addition, we choose two arbitrary vectors in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }:

$$\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_p \mathbf{v}_p$$

and
$$\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \dots + b_p \mathbf{v}_p.$$

1.4 Linear Combinations

Then

$$\mathbf{u} + \mathbf{v} = (a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_p\mathbf{v}_p) + (b_1\mathbf{v}_1 + b_2\mathbf{v}_2 + \dots + b_p\mathbf{v}_p)$$

= $(\dots \mathbf{v}_1 + \dots \mathbf{v}_1) + (\dots \mathbf{v}_2 + \dots \mathbf{v}_2) + \dots + (\dots \mathbf{v}_p + \dots \mathbf{v}_p)$
= $(a_1 + b_1)\mathbf{v}_1 + (a_2 + b_2)\mathbf{v}_2 + \dots + (a_p + b_p)\mathbf{v}_p.$

So $\mathbf{u} + \mathbf{v}$ is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

c. To show that Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } closed under scalar multiplication, choose an arbitrary number c and an arbitrary vector in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }:

$$\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \cdots + b_p \mathbf{v}_p.$$

A Shortcut for Determining Subspaces (cont.)

1.4 Linear Combinations

Then

$$c\mathbf{v} = c(b_1\mathbf{v}_1 + b_2\mathbf{v}_2 + \cdots + b_p\mathbf{v}_p)$$

$$= ___ \mathbf{v}_1 + __ \mathbf{v}_2 + \cdots + __ \mathbf{v}_p$$

So $c\mathbf{v}$ is in Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

Since properties a, b and c hold, $\text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

Determining Subspaces: Recap

Recap

To show that H is a subspace of a vector space, use Theorem 1.

O To show that a set is not a subspace of a vector space, provide a specific example showing that at least one of the axioms a, b or c (from the definition of a subspace) is violated.

Determining Subspaces: Example

Example

Is $V = \{(a+2b, 2a-3b) : a \text{ and } b \text{ are real}\}$ a subspace of \mathbb{R}^2 ? Why or why not?

Solution: Write vectors in V in column form:

$$\begin{bmatrix} a+2b\\ 2a-3b \end{bmatrix} = \begin{bmatrix} a\\ 2a \end{bmatrix} + \begin{bmatrix} 2b\\ -3b \end{bmatrix}$$
$$= \dots \begin{bmatrix} 1\\ 2 \end{bmatrix} + \dots \begin{bmatrix} 2\\ -3 \end{bmatrix}$$

So $V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and therefore V is a subspace of _____ by Theorem 1.

Determining Subspaces: Example

Solution: 0 is not in *H* since a = b = 0 or any other combination of values for *a* and *b* does not produce the zero vector. So property ______ fails to hold and therefore *H* is not a subspace of \mathbb{R}^3 .

Determining Subspaces: Example

Example Is the set *H* of all matrices of the form $\begin{vmatrix} 2a & b \\ 3a+b & 3b \end{vmatrix}$ a subspace of $M_{2\times 2}$? Explain. Solution: Since $\begin{vmatrix} 2a & b \\ 3a+b & 3b \end{vmatrix} = \begin{vmatrix} 2a & 0 \\ 3a & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ b & 3b \end{vmatrix}$ = a | + b |. Therefore $H = \text{Span} \left\{ \begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \right\}$ and so H is a subspace of $M_{2\times 2}$.

Spanning Sets

Theorem (1.5)

The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S.

Definition

The subspace spanned (or subspace generated) by a nonempty set S of vectors in V is the set of all linear combinations of vectors from S:

$$\langle S \rangle = \operatorname{span}(S) = \{c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n \mid c_i \in F, \mathbf{v}_i \in S\}$$

When $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is a finite set, we use the notation $< \mathbf{v}_1, \dots, \mathbf{v}_n >$ or $\mathbf{span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. A set S of vectors in V is said to $\mathbf{span} V$, or generate V, if $V = \mathbf{span}(S)$.

Jiwen He, University of Houston

Spring, 2015

▲ (四) トー (三) ト

30 / 30