Math 4377/6308 Advanced Linear Algebra 1.5 Linear Dependence and Linear Independence

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

1.5 Linear Dependence and Linear Independence

- Linear Independence: Definition
- Linear Independence and Homogeneous System
- Linear Independence of Matrix Columns
- Special Cases
- A Set of One Vector
- A Set of Two Vectors
- A Set Containing the $\mathbf{0}$ Vector
- A Set Containing Too Many Vectors
- Characterization of Linearly Dependent Sets
- Properties of Linearly Independent Sets
- Properties of Linear Dependence and Linear Independence

Linear Independence: Definition

Linear Independence

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution ($x_{1}=\cdots=x_{p}=0$).

Linear Dpendence

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists weights c_{1}, \ldots, c_{p}, not all 0 , such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

\uparrow
linear dependence relation (when weights are not all zero)

Linear Independence and Homogeneous System

Example

A homogeneous system such as

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

can be viewed as a vector equation

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The vector equation has the trivial solution $\left(x_{1}=0, x_{2}=0\right.$, $x_{3}=0$), but is this the only solution?

Linear Independence: Example

Example

Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-3 \\ 9 \\ 3\end{array}\right]$.
a. Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
b. If possible, find a linear dependence relation among $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Solution: (a)

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Augmented matrix:

$$
\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{3} is a free variable \Rightarrow there are nontrivial solutions.

Linear Independence: Example (cont.)

$\Rightarrow\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly dependent set
(b) Reduced echelon form:
$\left[\begin{array}{cccc}1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Longrightarrow \begin{aligned} & x_{1}= \\ & x_{2}= \\ & x_{3}\end{aligned}=$
Let $x_{3}=$ _---- (any nonzero number).
Then $x_{1}=\ldots$ _--- and $x_{2}=\ldots-\ldots$.

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+---\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+\ldots--\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\text { or } \\
\ldots-\ldots \mathbf{v}_{1}+\ldots \mathbf{v}_{2}+\ldots \mathbf{v}_{3}=\mathbf{0}
\end{gathered}
$$

(one possible linear dependence relation)

Linear Independence of Matrix Columns

Example (Linear Dependence Relation)

$$
-33\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+18\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+1\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

can be written as the matrix equation:

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{r}
-33 \\
18 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A \mathbf{x}=\mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Special Cases: 1. A Set of One Vector

Sometimes we can determine linear independence of a set with minimal effort.

Example (1. A Set of One Vector)

Consider the set containing one nonzero vector: $\left\{\mathbf{v}_{1}\right\}$
The only solution to $x_{1} v_{1}=0$ is $x_{1}=$ \qquad

$$
\text { So }\left\{\mathbf{v}_{1}\right\} \text { is linearly independent when } \mathbf{v}_{1} \neq \mathbf{0} .
$$

Special Cases: 2. A Set of Two Vectors

Example (2. A Set of Two Vectors)

Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
4 \\
2
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

a. Determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a linearly dependent set or a linearly independent set.
b. Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_{2}=\ldots \mathbf{u}_{1}$. Therefore

$$
\mathbf{u}_{1}+\ldots \mathbf{u}_{2}=0
$$

This means that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a linearly

Special Cases: 2. A Set of Two Vectors (cont.)

(b) Suppose

$$
c \mathbf{v}_{1}+d \mathbf{v}_{2}=\mathbf{0}
$$

Then $\mathbf{v}_{1}=\longrightarrow \mathbf{v}_{2}$ if $c \neq 0$. But this is impossible since \mathbf{v}_{1} is ------ a multiple of \mathbf{v}_{2} which means $c=$
Similarly, $\mathbf{v}_{2}=-\mathbf{v}_{1}$ if $d \neq 0$.
But this is impossible since \mathbf{v}_{2} is not a multiple of \mathbf{v}_{1} and so $d=0$. This means that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly set.

Special Cases: 2. A Set of Two Vectors (cont.)

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.

linearly \qquad

linearly

Special Cases: 3. A Set Containing the $\mathbf{0}$ Vector

Theorem

A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in V containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_{1}=\ldots$ _-_-. Then

$$
---\mathbf{v}_{1}+\ldots--\mathbf{v}_{2}+\cdots+\ldots--\mathbf{v}_{p}=\mathbf{0}
$$

which shows that S is linearly \qquad

Special Cases: 4. A Set Containing Too Many Vectors

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.

Outline of Proof:

$$
A=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{p}
\end{array}\right] \text { is } n \times p
$$

Suppose $p>n$.
$\Longrightarrow A \mathbf{x}=\mathbf{0}$ has more variables than equations
$\Longrightarrow A \mathbf{x}=\mathbf{0}$ has nontrivial solutions
\Longrightarrow columns of A are linearly dependent

Special Cases: Examples

Examples

With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.
a. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 4\end{array}\right]\right\}$
b. Columns of $\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 0 \\ 9 & 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 & 8\end{array}\right]$

Special Cases: Examples (cont.)

Examples (cont.)

c. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
d. $\left\{\left[\begin{array}{l}8 \\ 2 \\ 1 \\ 4\end{array}\right]\right\}$

Characterization of Linearly Dependent Sets

Example

Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ in \mathbf{R}^{3} in the following diagram. Is the set linearly dependent? Explain

Characterization of Linearly Dependent Sets

Theorem

An indexed set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_{1} \neq \mathbf{0}$, then some vector $\mathbf{v}_{j}(j \geq 2)$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Properties of Linearly Independent Sets

- The empty set is linearly independent
- A set with a single nonzero vector is linearly independent
- A set is linearly independent the only representations of 0 as a linear combination of its vectors are trivial

Properties of Linear Dependence and Linear Independence

Theorem (1.6)

Let V be a vector space, and let $S_{1} \subseteq S_{2} \subseteq V$. If S_{1} is linearly dependent, then S_{2} is linearly dependent.

Corollary

Let V be a vector space, and let $S_{1} \subseteq S_{2} \subseteq V$. If S_{2} is linearly independent, then S_{1} is linearly independent.

Theorem (1.7)

Let S be a linearly independent subset of a vector space V, and let \mathbf{v} be a vector in V that is not in S. Then $S \cup\{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \boldsymbol{\operatorname { s p a n }}(S)$.

