Math 4377/6308 Advanced Linear Algebra

1.5 Linear Dependence and Linear Independence

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

1.5 Linear Dependence and Linear Independence

- Linear Independence: Definition
- Linear Independence and Homogeneous System
- Linear Independence of Matrix Columns
- Special Cases
 - A Set of One Vector
 - A Set of Two Vectors
 - A Set Containing the 0 Vector
 - A Set Containing Too Many Vectors
- Characterization of Linearly Dependent Sets
- Properties of Linearly Independent Sets
- Properties of Linear Dependence and Linear Independence

Linear Independence: Definition

Linear Independence

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in a vector space V is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_p\mathbf{v}_p=\mathbf{0}$$

has only the trivial solution $(x_1 = \cdots = x_p = 0)$.

Linear Dpendence

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \dots, c_p , not all 0, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

linear dependence relation (when weights are not all zero)

Linear Independence and Homogeneous System

Example

A homogeneous system such as

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

can be viewed as a vector equation

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The vector equation has the trivial solution ($x_1 = 0$, $x_2 = 0$, $x_3 = 0$), but is this the *only solution*?

Linear Independence: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

- Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- If possible, find a linear dependence relation among v_1, v_2, v_3 .

Solution: (a)

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Augmented matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & -1 & 18 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_3 \text{ is a free variable } \Rightarrow \text{ there are nontrivial solutions.}$$

Linear Independence: Example (cont.)

 $\Rightarrow \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly dependent set

(b) Reduced echelon form:

$$\begin{bmatrix} 1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{matrix} x_1 & = \\ x_2 & = \\ x_3 & \end{matrix}$$

Let $x_3 = \dots$ (any nonzero number).

Then $x_1 =$ and $x_2 =$

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + \dots \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + \dots \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
or

$$_{---}$$
v₁ + $_{---}$ **v**₂ + $_{---}$ **v**₃ = **0**

埘

(one possible linear dependence relation)

Example (Linear Dependence Relation)

$$-33\begin{bmatrix}1\\3\\5\end{bmatrix}+18\begin{bmatrix}2\\5\\9\end{bmatrix}+1\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

can be written as the matrix equation:

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} -33 \\ 18 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution.

Special Cases: 1. A Set of One Vector

Sometimes we can determine linear independence of a set with minimal effort.

Example (1. A Set of One Vector)

The only solution to $x_1 \mathbf{v}_1 = 0$ is $x_1 = \dots$

Consider the set containing one nonzero vector: $\{\textbf{v}_1\}$

So $\{\mathbf{v}_1\}$ is linearly independent when $\mathbf{v}_1 \neq \mathbf{0}$.

Special Cases: 2. A Set of Two Vectors

Example (2. A Set of Two Vectors)

Let

$$\mathbf{u}_1 = \left[\begin{array}{c} 2 \\ 1 \end{array} \right], \ \mathbf{u}_2 = \left[\begin{array}{c} 4 \\ 2 \end{array} \right], \ \mathbf{v}_1 = \left[\begin{array}{c} 2 \\ 1 \end{array} \right], \ \mathbf{v}_2 = \left[\begin{array}{c} 2 \\ 3 \end{array} \right].$$

- a. Determine if $\{\textbf{u}_1,\textbf{u}_2\}$ is a linearly dependent set or a linearly independent set.
- b. Determine if $\{\textbf{v}_1,\textbf{v}_2\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_2 = \mathbf{u}_1$. Therefore

$$-- u_1 + -- u_2 = 0$$

This means that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly _____ set.

Algebra Spring, 2015

Special Cases: 2. A Set of Two Vectors (cont.)

(b) Suppose

$$c\mathbf{v}_1 + d\mathbf{v}_2 = \mathbf{0}$$
.

Then $\mathbf{v}_1 = \mathbf{v}_2$ if $c \neq 0$. But this is impossible since \mathbf{v}_1 is _____ a multiple of \mathbf{v}_2 which means $c = _$ ____. Similarly, $\mathbf{v}_2 = \mathbf{v}_1$ if $d \neq 0$. But this is impossible since \mathbf{v}_2 is not a multiple of \mathbf{v}_1 and so d = 0. This means that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly _____ set.

Special Cases: 2. A Set of Two Vectors (cont.)

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.

Special Cases: 3. A Set Containing the ${\bf 0}$ Vector

Theorem

A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in V containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_1 =$ ___. Then

$$\dots \mathbf{v}_1 + \dots \mathbf{v}_2 + \dots + \dots \mathbf{v}_p = \mathbf{0}$$

which shows that S is linearly ______.

Special Cases: 4. A Set Containing Too Many Vectors

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$ in \mathbf{R}^n is linearly dependent if p>n.

Outline of Proof:

$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_p] \text{ is } n \times p$$

Suppose p > n.

 \implies $A\mathbf{x} = \mathbf{0}$ has more variables than equations

 \implies $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions

 \Longrightarrow columns of A are linearly dependent

Special Cases: Examples

Examples

With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

a.
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix} \right\}$$

b. Columns of $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 0 \\ 9 & 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 & 8 \end{bmatrix}$

Special Cases: Examples (cont.)

Examples (cont.)

$$c.\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$$

$$d. \left\{ \begin{bmatrix} 8 \\ 2 \\ 1 \\ 4 \end{bmatrix} \right\}$$

Characterization of Linearly Dependent Sets

Example

Consider the set of vectors $\{v_1, v_2, v_3, v_4\}$ in \mathbb{R}^3 in the following Is the set linearly dependent? Explain diagram.

Characterization of Linearly Dependent Sets

Theorem

An indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_j $(j \geq 2)$ is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Properties of Linearly Independent Sets

- The empty set is linearly independent
- A set with a single nonzero vector is linearly independent
- A set is linearly independent the only representations of 0 as a linear combination of its vectors are trivial

Properties of Linear Dependence and Linear Independence

Theorem (1.6)

Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Corollary

Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem (1.7)

Let S be a linearly independent subset of a vector space V, and let \mathbf{v} be a vector in V that is not in S. Then $S \cup \{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \mathbf{span}(S)$.

