Math 4377/6308 Advanced Linear Algebra
1.5 Linear Dependence and Linear Independence

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377
1.5 Linear Dependence and Linear Independence

- Linear Independence: Definition
- Linear Independence and Homogeneous System
- Linear Independence of Matrix Columns
- Special Cases
 - A Set of One Vector
 - A Set of Two Vectors
 - A Set Containing the 0 Vector
 - A Set Containing Too Many Vectors
- Characterization of Linearly Dependent Sets
- Properties of Linearly Independent Sets
- Properties of Linear Dependence and Linear Independence
Linear Independence: Definition

Linear Independence
A set of vectors \(\{v_1, v_2, \ldots, v_p\} \) in a vector space \(V \) is said to be **linearly independent** if the vector equation

\[
x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0
\]

has only the trivial solution \((x_1 = \cdots = x_p = 0)\).

Linear Dependence
The set \(\{v_1, v_2, \ldots, v_p\} \) is said to be **linearly dependent** if there exists weights \(c_1, \ldots, c_p, \) not all 0, such that

\[
c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0.
\]

↑
linear dependence relation
(when weights are not all zero)
Linear Independence and Homogeneous System

Example

A homogeneous system such as

\[
\begin{bmatrix}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

can be viewed as a vector equation

\[
x_1 \begin{bmatrix}
1 \\
3 \\
5
\end{bmatrix} + x_2 \begin{bmatrix}
2 \\
5 \\
9
\end{bmatrix} + x_3 \begin{bmatrix}
-3 \\
9 \\
3
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\]

The vector equation has the trivial solution \((x_1 = 0, x_2 = 0, x_3 = 0)\), but is this the only solution?
Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} \).

a. Determine if \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) is linearly independent.

b. If possible, find a linear dependence relation among \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \).

Solution: (a)

\[
x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\]

Augmented matrix:

\[
\begin{bmatrix}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\(x_3 \) is a free variable \(\Rightarrow \) there are nontrivial solutions.
Linear Independence: Example (cont.)

⇒ \{v_1, v_2, v_3\} is a linearly dependent set

(b) Reduced echelon form:

\[
\begin{bmatrix}
1 & 0 & 33 & 0 \\
0 & 1 & -18 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\rightarrow
\begin{align*}
x_1 &= \\
x_2 &= \\
x_3 &=
\end{align*}
\]

Let \(x_3 = \) _____ (any nonzero number).

Then \(x_1 = \) _____ and \(x_2 = \) ____.

\[
\begin{bmatrix}
1 \\
3 \\
5 \\
\end{bmatrix} + \begin{bmatrix}
2 \\
5 \\
9 \\
\end{bmatrix} + \begin{bmatrix}
-3 \\
9 \\
3 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}
\]

or

\[
\begin{align*}
\text{---}v_1 + \text{---}v_2 + \text{---}v_3 &= 0 \\
\text{(one possible linear dependence relation)}
\end{align*}
\]
Example (Linear Dependence Relation)

\[
\begin{bmatrix}
-33 \\
3 \\
5 \\
\end{bmatrix} + 18 \begin{bmatrix}
2 \\
5 \\
9 \\
\end{bmatrix} + 1 \begin{bmatrix}
-3 \\
9 \\
3 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}
\]

can be written as the matrix equation:

\[
\begin{bmatrix}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3 \\
\end{bmatrix} \begin{bmatrix}
-33 \\
18 \\
1 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}.
\]

Each linear dependence relation among the columns of \(A \) corresponds to a nontrivial solution to \(Ax = 0 \).

The columns of matrix \(A \) are linearly independent if and only if the equation \(Ax = 0 \) has only the trivial solution.
Sometimes we can determine linear independence of a set with minimal effort.

Example (1. A Set of One Vector)

Consider the set containing one nonzero vector: \(\{v_1\} \)

The only solution to \(x_1v_1 = 0 \) is \(x_1 = \ldots \).

So \(\{v_1\} \) is linearly independent when \(v_1 \neq 0 \).
Example (2. A Set of Two Vectors)

Let

\[\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}. \]

a. Determine if \(\{\mathbf{u}_1, \mathbf{u}_2\} \) is a linearly dependent set or a linearly independent set.

b. Determine if \(\{\mathbf{v}_1, \mathbf{v}_2\} \) is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that \(\mathbf{u}_2 = \ldots \mathbf{u}_1 \). Therefore

\[\ldots \mathbf{u}_1 + \ldots \mathbf{u}_2 = 0 \]

This means that \(\{\mathbf{u}_1, \mathbf{u}_2\} \) is a linearly \ldots set.
(b) Suppose

\[cv_1 + dv_2 = 0. \]

Then \(v_1 = \frac{1}{c}v_2 \) if \(c \neq 0 \). But this is impossible since \(v_1 \) is ______ a multiple of \(v_2 \) which means \(c = \ldots \).

Similarly, \(v_2 = \frac{1}{d}v_1 \) if \(d \neq 0 \).

But this is impossible since \(v_2 \) is not a multiple of \(v_1 \) and so \(d = 0 \).

This means that \(\{v_1, v_2\} \) is a linearly ____________ set.
A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.
Special Cases: 3. A Set Containing the 0 Vector

Theorem

A set of vectors $S = \{v_1, v_2, \ldots, v_p\}$ in V containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $v_1 = ________$. Then

$$________v_1 + ________v_2 + \cdots + ________v_p = 0$$

which shows that S is linearly ______________.
1.5 Linear Independence

Special Cases: 4. A Set Containing Too Many Vectors

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set \(\{v_1, v_2, \ldots, v_p\} \) in \(\mathbb{R}^n \) is linearly dependent if \(p > n \).

Outline of Proof:

\[
A = \begin{bmatrix} v_1 & v_2 & \cdots & v_p \end{bmatrix} \text{ is } n \times p
\]

Suppose \(p > n \).

\[\Rightarrow \quad Ax = 0 \text{ has more variables than equations} \]

\[\Rightarrow \quad Ax = 0 \text{ has nontrivial solutions} \]

\[\Rightarrow \text{columns of } A \text{ are linearly dependent} \]
Examples

With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

a. \[
\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix} \right\}
\]

b. Columns of
\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 0 \\
9 & 8 & 7 & 6 & 5 \\
4 & 3 & 2 & 1 & 8
\end{bmatrix}
\]
Special Cases: Examples (cont.)

\begin{align*}
\text{c.} & \quad \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \\
\text{d.} & \quad \left\{ \begin{bmatrix} 8 \\ 2 \\ 1 \\ 4 \end{bmatrix} \right\}
\end{align*}
Characterization of Linearly Dependent Sets

Example

Consider the set of vectors \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \} \) in \(\mathbb{R}^3 \) in the following diagram. Is the set linearly dependent? Explain.
Characterization of Linearly Dependent Sets

Theorem

An indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_j ($j \geq 2$) is a linear combination of the preceding vectors $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.
Properties of Linearly Independent Sets

- The empty set is linearly independent.
- A set with a single nonzero vector is linearly independent.
- A set is linearly independent if the only representations of 0 as a linear combination of its vectors are trivial.
Properties of Linear Dependence and Linear Independence

Theorem (1.6)

Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Corollary

Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem (1.7)

Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.