Math 4377/6308 Advanced Linear Algebra 1.6 Bases and Dimension

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

1.6 Bases and Dimension

- A Basis Set: Definition
- A Basis Set: Examples
- The Spanning Set Theorem
- Properties of Bases
- The Replacement Theorem
- The Dimension of a Vector Space: Definition
- The Dimension of a Vector Space: Examples
- Dimensions of Subspaces of R^{3}
- Dimensions of Subspaces: Theorem

A Basis Set

Let H be the plane illustrated below. Which of the following are valid descriptions of H ?
(a) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$
(b) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$
(c) $H=\operatorname{Span}\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
(d) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$

A basis set is an "efficient" spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$ to both be examples of basis sets or bases (plural for basis) for H .

A Basis Set: Definition

Definition

A basis β for a vector space V is a linearly independent subset of V that generates V. The vectors of β form a basis for V.

A Basis Set of Subspace

Let H be a subspace of a vector space V. An indexed set of vectors $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis for H if
i. $\quad \beta$ is a linearly independent set, and
ii. $H=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$.

Example

Since $\operatorname{span}(\emptyset)=\{\mathbf{0}\}$ and \emptyset is linearly independent, \emptyset is a basis for the zero vector space.

A Basis Set: Examples

Example
Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Show that
$\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Solutions:

Let $A=\left[\begin{array}{lll}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Since A has 3 pivots,

- the columns of A are linearly \qquad , by the IMT,
- and the columns of A \qquad
- therefore, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

The basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ is called a standard basis for F^{n} : $\mathbf{e}_{1}=(1,0, \cdots, 0), \mathbf{e}_{2}=(0,1,0, \cdots, 0), \cdots, \mathbf{e}_{n}=(0, \cdots, 0,1)$.

A Basis Set: Examples

Example

Let $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$. Show that S is a basis for \mathbf{P}_{n}.
Solution: Any polynomial in \mathbf{P}_{n} is in span of S. To show that S is linearly independent, assume

$$
c_{0} \cdot 1+c_{1} \cdot x+\cdots+c_{n} \cdot x^{n}=\mathbf{0}
$$

Then $c_{0}=c_{1}=\cdots=c_{n}=0$. Hence S is a basis for \mathbf{P}_{n}.
The basis $\left\{1, x, x^{2}, \cdots, x^{n}\right\}$ is called the standard basis for $\mathbf{P}_{n}(F)$.

A Basis Set: Example

Example

Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$.
Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ a basis for \mathbb{R}^{3} ?
Solution: Let $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$. By row reduction,

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 5
\end{array}\right]
$$

and since there are 3 pivots, the columns of A are linearly independent and they span \mathbb{R}^{3} by the IMT. Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. is a basis for \mathbb{R}^{3}.

A Basis Set: Example

Example

Explain why each of the following sets is not a basis for \mathbb{R}^{3}.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 7\end{array}\right]\right\}$

Example

(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

Example

Suppose $\mathbf{v}_{1}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$.
Solution: If \mathbf{x} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, then

$$
\begin{gathered}
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3}\left(\ldots \mathbf{v}_{1}+\ldots \mathbf{v}_{2}\right) \\
=
\end{gathered}
$$

Therefore,

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} .
$$

The Spanning Set Theorem

Theorem (The Spanning Set Theorem)

Let

$$
S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}
$$

be a set in V and let

$$
H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\} .
$$

a. If one of the vectors in S - say \mathbf{v}_{k} - is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_{k} still spans H.
b. If $H \neq\{\mathbf{0}\}$, some subset of S is a basis for H.

Bases for Spanning Set: Theorem and Examples

Example

Find a basis for $H=\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$, where

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 2 & 0 & 4 \\
2 & 4 & -1 & 3 \\
3 & 6 & 2 & 22 \\
4 & 8 & 0 & 16
\end{array}\right]
$$

Solution: Row reduce:

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}
\end{array}\right] \sim \cdots \sim\left[\begin{array}{llll}
1 & 2 & 0 & 4 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4}
\end{array}\right]
$$

Bases for Spanning Set: Theorem and Examples (cont.)

Note that

$$
\begin{array}{rll}
\mathbf{b}_{2}=\ldots--\mathbf{b}_{1} & \text { and } & \mathbf{a}_{2}=\ldots-\mathbf{a}_{1} \\
\mathbf{b}_{4}=4 \mathbf{b}_{1}+5 \mathbf{b}_{3} & \text { and } & \mathbf{a}_{4}=4 \mathbf{a}_{1}+5 \mathbf{a}_{3}
\end{array}
$$

\mathbf{b}_{1} and \mathbf{b}_{3} are not multiples of each other
\mathbf{a}_{1} and \mathbf{a}_{3} are not multiples of each other

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore

$$
\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}
$$

and $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$ is a basis for H.

Bases for Spanning Set: Theorem and Example

Theorem

The pivot columns of a matrix $A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{2}\right]$ form a basis for $\operatorname{span}\left(\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right)$.

Example

Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ -4 \\ 6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$. Find a basis for
$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
Solution: Let

$$
A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]=\left[\begin{array}{rrr}
1 & -2 & 3 \\
2 & -4 & 6 \\
-3 & 6 & 9
\end{array}\right]
$$

Bases for Spanning Set: Theorem and Example (cont.)

By row reduction, $\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right] \sim\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Therefore a basis
for $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is $\{[],[]\}$.

Properties of Bases

Theorem (1.8)

Let V be a vector space and $\beta=\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be a subset of V. Then β is a basis for V if and only if each $\mathbf{v} \in V$ can be uniquely expressed as a linear combination of vectors of β :

$$
\mathbf{v}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n} \mathbf{u}_{n}
$$

for unique scalars a_{1}, \cdots, a_{n}.

Theorem (1.9)

If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

The Replacement Theorem

Theorem (1.10 The Replacement Theorem)

Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $n-m$ vectors such that $L \cup H$ generates V.

Corollary 0

If a vector space V has a basis $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Suppose $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is a set of p vectors in V where $p>n$. If S is a linearly independent subset of V, the Replacement Theorem implies that $p \leq n$, a contradiction. Therefore $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ are linearly dependent.

The Replacement Theorem (cont.)

Corollary 1

Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Proof: Suppose β_{1} is a basis for V consisting of exactly n vectors. Now suppose β_{2} is any other basis for V. By the definition of a basis, we know that β_{1} and β_{2} are both linearly independent sets.

By Corollary 0 , if β_{1} has more vectors than β_{2}, then $\ldots-$ is a $^{\text {a }}$ linearly dependent set (which cannot be the case).

Again by Corollary 0 , if β_{2} has more vectors than β_{1}, then is a linearly dependent set (which cannot be the case).

Therefore β_{2} has exactly n vectors also.

The Dimension of a Vector Space: Definition

Dimension of a Vector Space
If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0 . If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Corollary 2

Let V be a vector space with dimension n.
(a) Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
(b) Any linearly independent subset of V that contains exactly n vectors is a basis for V.
(c) Every linearly independent subset of V can be extended to a basis for V.

The Dimension of a Vector Space: Examples

Example

The standard basis for \mathbf{P}_{3} is $\{\quad\}$. So dim $P_{3}=$ \qquad .

$$
\text { In general, } \operatorname{dim} \mathbf{P}_{n}=n+1 .
$$

Example

The standard basis for \mathbb{R}^{n} is $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the columns of I_{n}. So, for example, $\operatorname{dim} \mathbb{R}^{3}=3$.

The Dimension of a Vector Space: Examples (cont.)

Example

Find a basis and the dimension of the subspace

$$
W=\left\{\left[\begin{array}{c}
a+b+2 c \\
2 a+2 b+4 c+d \\
b+c+d \\
3 a+3 c+d
\end{array}\right]: a, b, c, d \text { are real }\right\}
$$

Solution: Since

$$
\left[\begin{array}{c}
a+b+2 c \\
2 a+2 b+4 c+d \\
b+c+d \\
3 a+3 c+d
\end{array}\right]=a\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right]+b\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
2 \\
4 \\
1 \\
3
\end{array}\right]+d\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

The Dimension of a Vector Space: Example (cont.)

$$
W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}
$$

where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 4 \\ 1 \\ 3\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$.

- Note that \mathbf{v}_{3} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, so by the Spanning Set Theorem, we may discard \mathbf{v}_{3}.
- \mathbf{v}_{4} is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. So $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a basis for W. Also, $\operatorname{dim} W=\ldots$.-.

Dimensions of Subspaces of R^{3}

Example (Dimensions of subspaces of R^{3})

(1) 0 -dimensional subspace contains only the zero vector $\mathbf{0}=(0,0,0)$.
(2) 1-dimensional subspaces. $\operatorname{Span}\{\mathbf{v}\}$ where $\mathbf{v} \neq \mathbf{0}$ is in \mathbb{R}^{3}.
(3) These subspaces are \qquad through the origin.
(4) 2-dimensional subspaces. $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ where \mathbf{u} and \mathbf{v} are in \mathbb{R}^{3} and are not multiples of each other.
(5) These subspaces are through the origin.
(6) 3-dimensional subspaces. $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^{3}. This subspace is \mathbb{R}^{3} itself because the columns of $A=\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$ span \mathbb{R}^{3} according to the IMT.

Dimensions of Subspaces: Theorem

Theorem (1.11)

Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover, if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $V=W$.

Corollary

If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

Dimensions of Subspaces: Example

Example

Let $H=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. Then H is a subspace of \mathbb{R}^{3} and
$\operatorname{dim} H<\operatorname{dim} \mathbb{R}^{3}$. We could expand the spanning set

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} \text { to }\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { for a basis of } \mathbb{R}^{3} .
$$

