Math 4377/6308 Advanced Linear Algebra 1.6 Bases and Dimension

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

Spring, 2015 1

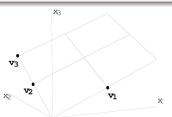
- A Basis Set: Definition
- A Basis Set: Examples
- The Spanning Set Theorem
- Properties of Bases
- The Replacement Theorem
- The Dimension of a Vector Space: Definition
- The Dimension of a Vector Space: Examples
- Dimensions of Subspaces of R^3
- Dimensions of Subspaces: Theorem

A Basis Set

Let H be the plane illustrated below. Which of the following are valid descriptions of H?

(a)
$$H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$
 (b) $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_3\}$

(c) $H = \text{Span}\{\mathbf{v}_2, \mathbf{v}_3\}$ (d) $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$



A *basis set* is an "efficient" spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\{v_1, v_2\}$ and $\{v_1, v_3\}$ to both be examples of basis sets or bases (plural for basis) for H.

Jiwen He, University of Houston

A Basis Set: Definition

Definition

A basis β for a vector space V is a linearly independent subset of V that generates V. The vectors of β form a basis for V.

A Basis Set of Subspace

Let H be a subspace of a vector space V. An indexed set of vectors $\beta = {\bf b}_1, \dots, {\bf b}_p$ in V is a basis for H if

.
$$\beta$$
 is a linearly independent set, and

i.
$$H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}.$$

Example

Since $\operatorname{span}(\emptyset) = \{\mathbf{0}\}$ and \emptyset is linearly independent, \emptyset is a basis for the zero vector space.

A (10) < A (10) </p>

A Basis Set: Examples

Example

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Show that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbb{R}^3 .

Solutions:

Let
$$A = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Since A has 3 pivots,

- the columns of A are linearly _____, by the IMT,
- and the columns of A _____ by IMT;
- therefore, $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbb{R}^3 .

The basis $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is called a **standard basis** for F^n : $\mathbf{e}_1 = (1, 0, \cdots, 0), \ \mathbf{e}_2 = (0, 1, 0, \cdots, 0), \ \cdots, \ \mathbf{e}_n = (0, \cdots, 0, 1).$

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

A Basis Set: Examples

Example

Let
$$S = \{1, x, x^2, \dots, x^n\}$$
. Show that S is a basis for \mathbf{P}_n

Solution: Any polynomial in P_n is in span of *S*. To show that *S* is linearly independent, assume

$$c_0 \cdot 1 + c_1 \cdot x + \cdots + c_n \cdot x^n = \mathbf{0}.$$

Then $c_0 = c_1 = \cdots = c_n = 0$. Hence S is a basis for \mathbf{P}_n .

The basis $\{1, x, x^2, \dots, x^n\}$ is called the **standard basis** for $\mathbf{P}_n(F)$.

< 回 > < 三 > < 三 >

A Basis Se

A Basis Set: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\0\\3 \end{bmatrix}$.
Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a basis for \mathbb{R}^3 ?
Solution: Let $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1\\2 & 1 & 0\\0 & 1 & 3 \end{bmatrix}$. By row reduction,
 $\begin{bmatrix} 1 & 0 & 1\\2 & 1 & 0\\0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1\\0 & 1 & -2\\0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1\\0 & 1 & -2\\0 & 0 & 5 \end{bmatrix}$

and since there are 3 pivots, the columns of A are linearly independent and they span \mathbb{R}^3 by the IMT. Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a **basis** for \mathbb{R}^3 .

Jiwen He, University of Houston

Spring, 2015 7

A Basis Set: Example

Example

Explain why each of the following sets is **not** a basis for \mathbb{R}^3 .

$$(a) \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\7 \end{bmatrix} \right\}$$

Example	
(b) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$	

A Basis Set

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

Example

Suppose
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$.

Solution: If x is in $\text{Span}\{\textbf{v}_1,\textbf{v}_2,\textbf{v}_3\},$ then

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (\dots \mathbf{v}_1 + \dots \mathbf{v}_2)$$

$$=$$
 $_$ $\mathbf{v}_1 + _$ \mathbf{v}_2

Therefore,

$$\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}=\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$$

Jiwen He, University of Houston

A Basis Se

The Spanning Set Theorem

Theorem (The Spanning Set Theorem)

Let

$$S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$$

be a set in V and let

$$H = \operatorname{Span} \left\{ \mathbf{v}_1, \ldots, \mathbf{v}_p \right\}.$$

- a. If one of the vectors in S say \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{\mathbf{0}\}$, some subset of S is a basis for H.

oring, 2015 10 /

Basis Set

Bases for Spanning Set: Theorem and Examples

Example

Find a basis for $H = \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$, where

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.$$

Solution: Row reduce:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 \end{bmatrix}$$

A Basis Set

Bases for Spanning Set: Theorem and Examples (cont.)

Note that

 $\mathbf{b}_2 = ___\mathbf{b}_1 \qquad \text{and} \qquad \mathbf{a}_2 = ___\mathbf{a}_1$

 $\mathbf{b}_4 = 4\mathbf{b}_1 + 5\mathbf{b}_3 \qquad \text{and} \qquad \mathbf{a}_4 = 4\mathbf{a}_1 + 5\mathbf{a}_3$

 \mathbf{b}_1 and \mathbf{b}_3 are not multiples of each other

 \mathbf{a}_1 and \mathbf{a}_3 are not multiples of each other

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore

$$\operatorname{Span}\left\{a_{1},\,a_{2},\,a_{3},\,a_{4}\right\}=\operatorname{Span}\left\{a_{1},\,a_{3}\right\}$$

and $\{a_1, a_3\}$ is a basis for H.

Jiwen He, University of Houston

A Basis Se

Bases for Spanning Set: Theorem and Example

Theorem

The pivot columns of a matrix $A = [\mathbf{a}_1, \cdots, \mathbf{a}_2]$ form a basis for span $(\mathbf{a}_1, \cdots, \mathbf{a}_n)$.

Example
Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2\\-4\\6 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 3\\6\\9 \end{bmatrix}$. Find a basis for
Span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ }.

Solution: Let

$$A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ -3 & 6 & 9 \end{bmatrix}$$

Bases for Spanning Set: Theorem and Example (cont.)

1.6 Bases and Dimension

By row reduction,
$$[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Therefore a basis for Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is $\left\{ \begin{bmatrix} & \\ & \\ & \end{bmatrix}, \begin{bmatrix} & \\ & \\ & \end{bmatrix} \right\}$.

Jiwen He, University of Houston

< 🗇 🕨 < 🖃 🕨

Properties of Bases

Theorem (1.8)

Let V be a vector space and $\beta = {\mathbf{u}_1, \dots, \mathbf{u}_n}$ be a subset of V. Then β is a basis for V if and only if each $\mathbf{v} \in V$ can be uniquely expressed as a linear combination of vectors of β :

 $\mathbf{v} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \cdots + a_n\mathbf{u}_n$

for unique scalars a_1, \dots, a_n .

Theorem (1.9)

If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

A Basis Se

The Replacement Theorem

Theorem (1.10 The Replacement Theorem)

Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \le n$ and there exists a subset H of G containing exactly n - m vectors such that $L \cup H$ generates V.

Corollary 0

If a vector space V has a basis $\beta = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, then any set in V containing more than *n* vectors must be linearly dependent.

Proof: Suppose $S = {\mathbf{u}_1, \dots, \mathbf{u}_p}$ is a set of p vectors in V where p > n. If S is a linearly independent subset of V, the Replacement Theorem implies that $p \le n$, a contradiction. Therefore ${\mathbf{u}_1, \dots, \mathbf{u}_p}$ are linearly dependent.

The Replacement Theorem (cont.)

Corollary 1

Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Proof: Suppose β_1 is a basis for V consisting of exactly n vectors. Now suppose β_2 is any other basis for V. By the definition of a basis, we know that β_1 and β_2 are both linearly independent sets.

By Corollary 0, if β_1 has more vectors than β_2 , then _____ is a linearly dependent set (which cannot be the case).

Again by Corollary 0, if β_2 has more vectors than β_1 , then _____ is a linearly dependent set (which cannot be the case).

Therefore β_2 has exactly n vectors also.

1.6 Bases and Dimension A Basis Set

The Dimension of a Vector Space: Definition

Dimension of a Vector Space

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

Corollary 2

Let V be a vector space with dimension n.

- (a) Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- (b) Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- (c) Every linearly independent subset of V can be extended to a basis for V.

1.6 Bases and Dimension A Basis Set The Dimension of a Vector Space: Examples

In general, dim $\mathbf{P}_n = n + 1$.

Example

The standard basis for \mathbb{R}^n is $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ where $\mathbf{e}_1, \dots, \mathbf{e}_n$ are the columns of I_n . So, for example, dim $\mathbb{R}^3 = 3$.

(人間) トイヨト イヨト

<u>1.6 Bases and Dimension</u> A Basis Set <u>The Dimension of a Vector Space</u>: Examples (cont.)

Example

Find a basis and the dimension of the subspace

$$W = \left\{ \begin{bmatrix} a+b+2c\\ 2a+2b+4c+d\\ b+c+d\\ 3a+3c+d \end{bmatrix} : a, b, c, d \text{ are real} \right\}.$$

Solution: Since

$$\begin{bmatrix} a+b+2c\\ 2a+2b+4c+d\\ b+c+d\\ 3a+3c+d \end{bmatrix} = a \begin{bmatrix} 1\\ 2\\ 0\\ 3 \end{bmatrix} + b \begin{bmatrix} 1\\ 2\\ 1\\ 0 \end{bmatrix} + c \begin{bmatrix} 2\\ 4\\ 1\\ 3 \end{bmatrix} + d \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}$$

1.6 Bases and Dimension A Basis Set The Dimension of a Vector Space: Example (cont.)

 $W = \mathsf{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

where
$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2\\4\\1\\3 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$.

- Note that v₃ is a linear combination of v₁ and v₂, so by the Spanning Set Theorem, we may discard v₃.
- v₄ is not a linear combination of v₁ and v₂. So {v₁, v₂, v₄} is a basis for W. Also, dim W =____.

Basis Set

Dimensions of Subspaces of R^3

Example (Dimensions of subspaces of R^3)

- **4** *O-dimensional subspace* contains only the zero vector $\mathbf{0} = (0, 0, 0)$.
- **2** *1-dimensional subspaces.* Span $\{v\}$ where $v \neq 0$ is in \mathbb{R}^3 .
- **3** These subspaces are _____ through the origin.
- ④ 2-dimensional subspaces. Span{u, v} where u and v are in ℝ³ and are not multiples of each other.
- **6** These subspaces are _____ through the origin.
- ⁽⁶⁾ 3-dimensional subspaces. Span{u, v, w} where u, v, w are linearly independent vectors in ℝ³. This subspace is ℝ³ itself because the columns of A = [u v w] span ℝ³ according to the IMT.

Dimensions of Subspaces: Theorem

Theorem (1.11)

Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

Corollary

If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

Basis Se

Dimensions of Subspaces: Example

Example Let $H = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$. Then H is a subspace of \mathbb{R}^3 and $\dim H < \dim \mathbb{R}^3$. We could expand the spanning set $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ to $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\}$ for a basis of \mathbb{R}^3 .

Jiwen He, University of Houston

pring, 2015 24 /