Math 4377/6308 Advanced Linear Algebra 2.1 Linear Transformations, Null Spaces and Ranges

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

5pring, 2015 1 ,

2.1 Linear Transformations, Null Spaces and Ranges

- Linear Transformations: Definition and Properties
- Matrix Transformations
 - Matrix Acting on Vector
 - Matrix-Vector Multiplication
 - Transformation: Domain and Range
 - Examples
- Null Spaces and Ranges
 - Definition and Theorems
 - Null Spaces and Column Spaces of Matrices
- Nullity and Rank
 - Definitions and Dimension Theorem
 - Ranks of Matrices and Rank Theorem

Definition

We call a function $T: V \to W$ a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have (a) T(x+y) = T(x) + T(y) and (b) T(cx) = cT(x)

1 If T is linear, then
$$T(0) = 0$$
.
2 T is linear $\Leftrightarrow T(cx + y) = cT(x) + T(y), \forall x, y \in V, c \in F$.
3 If T is linear, then $T(x - y) = T(x) - T(y), \forall x, y \in V$.
4 T is linear \Leftrightarrow for $x_1, \dots, x_n \in V$ and $a_1, \dots, a_n \in F$,
 $T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i)$.

i=1

Jiwen He, University of Houston

i=1

-

▲ 同 ▶ → 三 ▶

Н

Special Linear Transformations

- **(D)** The identity transformation $I_V : V \to V : I_V(x) = x, \forall x \in V$.
- **2** The zero transformation $T_0: V \to W: T_0(x) = 0, \forall x \in V.$

Matrix Transformation

Suppose A is $m \times n$. The matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m : T_A(\mathbf{x}) = A\mathbf{x}, \forall \in \mathbb{R}^n$. Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A\mathbf{x}$.

Solving $A\mathbf{x} = \mathbf{b}$ amounts to finding all ____ in \mathbf{R}^n which are transformed into vector \mathbf{b} in \mathbf{R}^m through multiplication by A.

Terminology

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Spring, 2015

屮

Matrix Transformations: Example

Example

Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$$
. Define $T : \mathbf{R}^2 \longrightarrow \mathbf{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.
Then if $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Matrix Transformations: Example

Example

Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$ and
 $\mathbf{c} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$. Define a transformation $T : \mathbf{R}^3 \to \mathbf{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$
a. Find an \mathbf{x} in \mathbf{R}^3 whose image under T is \mathbf{b} .
b. Is there more than one \mathbf{x} under T whose image is \mathbf{b} .
(uniqueness problem)
c. Determine if \mathbf{c} is in the range of the transformation T .
(existence problem)

Solution: (a) Solve _____= for x, or

$$\begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$$

Matrix Transformations: Example (cont.)

Augmented matrix:

$$\left[\begin{array}{rrrrr} 1 & -2 & 3 & 2 \\ -5 & 10 & -15 & -10 \end{array}\right] \sim \left[\begin{array}{rrrrr} 1 & -2 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

 $x_1 = 2x_2 - 3x_3 + 2$ x₂ is free x₃ is free

Let
$$x_2 = ___$$
 and $x_3 = ___$. Then $x_1 = ____$.
So $\mathbf{x} = \begin{bmatrix} \\ \\ \end{bmatrix}$

< /₽ > < E > <

inear Transformations Nul A & Col A

Matrix Transformations: Example (cont.)

(b) Is there an **x** for which $T(\mathbf{x}) = \mathbf{b}$?

Free variables exist ψ There is more than one **x** for which $T(\mathbf{x}) = \mathbf{b}$

(c) Is there an **x** for which $T(\mathbf{x}) = \mathbf{c}$? This is another way of

asking if $A\mathbf{x} = \mathbf{c}$ is _____. Augmented matrix:

 $\left[\begin{array}{rrrr} 1 & -2 & 3 & 3 \\ -5 & 10 & -15 & 0 \end{array}\right] \sim \left[\begin{array}{rrrr} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$

 \mathbf{c} is not in the _____ of \mathcal{T} .

If A is $m \times n$, then the transformation $T(\mathbf{x}) = A\mathbf{x}$ has the following properties:

$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = \dots + \dots$$

= _____ +

and

$$T(c\mathbf{u}) = A(c\mathbf{u}) = ____A\mathbf{u} = ____T(\mathbf{u})$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^n and all scalars c.

Every matrix transformation is a **linear** transformation.

Null Space and Range

Definition

For linear $T: V \to W$, the null space (or kernel) N(T) of T is the set of all $x \in V$ such that T(x) = 0: $N(T) = \{x \in V : T(x) = 0\}$. The range (or image) R(T) of T is the subset of W consisting of all images of vectors in V: $R(T) = \{T(x) : x \in V\}$.

Theorem (2.1)

For vector spaces V, W and linear $T : V \rightarrow W$, N(T) and R(T) are subspaces of V and W, respectively.

Theorem (2.2)

For vector spaces V, W and linear $T : V \rightarrow W$, if $\beta = \{v_1, \dots, v_n\}$ is a basis for V, then

 $R(T) = \operatorname{span}(T(\beta)) = \operatorname{span}(\{T(v_1), \cdots, T(v_n)\}).$

Null Space of a Matrix

The **null space** of an $m \times n$ matrix A, written as Nul A, is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nul $A = {\mathbf{x} : \mathbf{x} \text{ is in } \mathbf{R}^n \text{ and } A\mathbf{x} = \mathbf{0}}$ (set notation)

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Proof: Nul A is a subset of \mathbb{R}^n since A has n columns. Must verify properties a, b and c of the definition of a subspace.

Property (a) Show that 0 is in Nul A. Since _____, 0 is in

Property (b) If **u** and **v** are in Nul A, show that $\mathbf{u} + \mathbf{v}$ is in Nul A. Since **u** and **v** are in Nul A,

2.1 Linear Transformations

_____ and _____

Therefore

Null Space (cont.)

$$A(\mathbf{u} + \mathbf{v}) = \dots + \dots = \dots + \dots = \dots$$

Property (c) If **u** is in Nul A and c is a scalar, show that c**u** in Nul A:

$$A(c\mathbf{u}) = ___A(\mathbf{u}) = c\mathbf{0} = \mathbf{0}.$$

Since properties a, b and c hold, A is a subspace of \mathbb{R}^n . Solving $A\mathbf{x} = \mathbf{0}$ yields an *explicit description of Nul A*.

Null Space: Example

Example

Find an explicit description of Nul A where

$$A = \left[\begin{array}{rrrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right]$$

Solution: Row reduce augmented matrix corresponding to $A\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 3 & 6 & 6 & 3 & 9 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix}$$

Null Space: Example (cont.)

Then

Nul $A = span\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$

Jiwen He, University of Houston

pring, 2015 14

Null Space: Observations

Observations:

1. Spanning set of Nul *A*, found using the method in the last example, is automatically linearly independent:

$$c_{1} \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} + c_{2} \begin{bmatrix} -13\\0\\6\\1\\0 \end{bmatrix} + c_{3} \begin{bmatrix} -33\\0\\15\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$$

The **column space** of an $m \times n$ matrix A (Col A) is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \ \dots \ \mathbf{a}_n]$, then

$$Col A = Span\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbf{R}^m .

Why?

Recall that if $A\mathbf{x} = \mathbf{b}$, then \mathbf{b} is a linear combination of the columns of A. Therefore

Col
$$A = \{\mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbf{R}^n\}$$

Column Space: Example

Example

Find a matrix A such that W = Col A where

$$W = \left\{ \begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} : x, y \text{ in } \mathbf{R} \right\}.$$

Solution:

$$\begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + y \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Column Space: Example (cont.)

The column space of an $m \times n$ matrix A is all of \mathbf{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbf{R}^m .

The Contrast Between Nul A and Col A

Example

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1 \end{bmatrix}$$

(a) The column space of A is a subspace of \mathbf{R}^k where $k = \dots$.

(b) The null space of A is a subspace of \mathbf{R}^k where k =_____.

(c) Find a nonzero vector in Col A. (There are infinitely many possibilities.)

$$--\begin{bmatrix} 1\\2\\3\\0 \end{bmatrix} + --\begin{bmatrix} 2\\4\\6\\0 \end{bmatrix} + --\begin{bmatrix} 3\\7\\10\\1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

The Contrast Between Nul A and Col A (cont.)

Example (cont.)

(d) Find a nonzero vector in Nul *A*. Solve $A\mathbf{x} = \mathbf{0}$ and pick one solution.

Contrast Between Nul A and Col A where A is $m \times n$

Null Spaces & Column Spaces: Examples

Example

Determine whether each of the following sets is a vector space or provide a counterexample.

(a)
$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x - y = 4 \right\}$$

Solution: Since

is not in H, H is not a vector space.

near Transformations Nul A & Co

Null Spaces & Column Spaces: Examples (cont.)

Example

(b)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{array}{c} x - y = 0 \\ y + z = 0 \end{array} \right\}$$

Solution: Rewrite

as $\begin{cases}
y + z = 0 \\
y \\
z
\end{bmatrix} = \begin{bmatrix} 0 \\
0 \\
0
\end{bmatrix}$ So V = Nul A where $A = \begin{bmatrix} 1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$. Since Nul A is a subspace of \mathbf{R}^2 , V is a vector space.

x - v = 0

ear Transformations Nul A & C

Null Spaces & Column Spaces: Examples (cont.)

Example

(c)
$$S = \left\{ \begin{bmatrix} x+y\\ 2x-3y\\ 3y \end{bmatrix} : x, y, z \text{ are real} \right\}$$

One Solution: Since

$$\begin{bmatrix} x+y\\2x-3y\\3y \end{bmatrix} = x \begin{bmatrix} 1\\2\\0 \end{bmatrix} + y \begin{bmatrix} 1\\-3\\3 \end{bmatrix},$$
$$S = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\3 \end{bmatrix} \right\};$$

therefore S is a vector space.

Another Solution: Since

$$\begin{bmatrix} x+y\\ 2x-3y\\ 3y \end{bmatrix} = x \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} + y \begin{bmatrix} 1\\ -3\\ 3 \end{bmatrix},$$
$$S = \text{Col } A \quad \text{where } A = \begin{bmatrix} 1 & 1\\ 2 & -3\\ 0 & 3 \end{bmatrix};$$

therefore S is a vector space, since a column space is a vector space.