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Linear Transformations

Definition

We call a function T : V →W a linear transformation from V to
W if, for all x , y ∈ V and c ∈ F , we have

(a) T (x + y) = T (x) + T (y) and

(b) T (cx) = cT (x)

1 If T is linear, then T (0) = 0.

2 T is linear ⇔ T (cx + y) = cT (x) + T (y), ∀x , y ∈ V , c ∈ F .

3 If T is linear, then T (x − y) = T (x)− T (y), ∀x , y ∈ V .

4 T is linear ⇔ for x1, · · · , xn ∈ V and a1, · · · , an ∈ F ,

T (
n∑

i=1

aixi ) =
n∑

i=1

aiT (xi ).

Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, 2015 3 / 24



2.1 Linear Transformations Linear Transformations Nul A & Col A

Special Linear Transformations

1 The identity transformation IV : V → V : IV (x) = x , ∀x ∈ V .

2 The zero transformation T0 : V →W : T0(x) = 0, ∀x ∈ V .

Matrix Transformation

Suppose A is m × n. The matrix transformation
TA : Rn → Rm : TA(x) = Ax, ∀ ∈ Rn. Matrix A is an object acting
on x by multiplication to produce a new vector Ax.

Solving Ax = b amounts to finding all in Rn which are
transformed into vector b in Rm through multiplication by A.

Terminology

Rn: domain of T Rm: codomain of T
T (x) in Rm is the image of x under the transformation T

Set of all images T (x) is the range of T
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Matrix Transformations: Example

Example

Let A =

 1 0
2 1
0 1

. Define T : R2 −→ R3 by T (x) = Ax.

Then if x =

[
2
1

]
, T (x) = Ax =

 1 0
2 1
0 1

[ 2
1

]
=

 2
5
1


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Matrix Transformations: Example

Example

Let A =

[
1 −2 3
−5 10 −15

]
, u =

 2
3
1

, b =

[
2
−10

]
and

c =

[
3
0

]
. Define a transformation T : R3 → R2 by T (x) = Ax.

a. Find an x in R3 whose image under T is b.
b. Is there more than one x under T whose image is b.
(uniqueness problem)
c. Determine if c is in the range of the transformation T .
(existence problem)

Solution: (a) Solve = for x, or[
1 −2 3
−5 10 −15

] x1
x2
x3

 =

[
2
−10

]
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Matrix Transformations: Example (cont.)

Augmented matrix:[
1 −2 3 2
−5 10 −15 −10

]
∼
[

1 −2 3 2
0 0 0 0

]
x1 = 2x2 − 3x3 + 2
x2 is free
x3 is free

Let x2 = and x3 = . Then x1 = .

So x =

 
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Matrix Transformations: Example (cont.)

(b) Is there an x for which T (x) = b?

Free variables exist
⇓

There is more than one x for which T (x) = b

(c) Is there an x for which T (x) = c? This is another way of

asking if Ax = c is .

Augmented matrix:[
1 −2 3 3
−5 10 −15 0

]
∼
[

1 −2 3 0
0 0 0 1

]

c is not in the of T .
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Linear Transformations

If A is m × n, then the transformation T (x) = Ax has the
following properties:

T (u + v) = A (u + v) = +

= +

and

T (cu) = A (cu) = Au = T (u)

for all u,v in Rn and all scalars c .

Every matrix transformation is a linear transformation.
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Null Space and Range

Definition

For linear T : V →W , the null space (or kernel) N(T ) of T is the
set of all x ∈ V such that T (x) = 0: N(T ) = {x ∈ V : T (x) = 0}.
The range (or image) R(T ) of T is the subset of W consisting of
all images of vectors in V : R(T ) = {T (x) : x ∈ V }.

Theorem (2.1)

For vector spaces V , W and linear T : V →W, N(T ) and R(T )
are subspaces of V and W , respectively.

Theorem (2.2)

For vector spaces V , W and linear T : V →W, if
β = {v1, · · · , vn} is a basis for V , then

R(T ) = span(T (β)) = span({T (v1), · · · ,T (vn)}).
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Null Space of a Matrix

The null space of an m × n matrix A, written as Nul A, is the set
of all solutions to the homogeneous equation Ax = 0.

Nul A = {x : x is in Rn and Ax = 0} (set notation)

Theorem

The null space of an m × n matrix A is a subspace of Rn.
Equivalently, the set of all solutions to a system Ax = 0 of m
homogeneous linear equations in n unknowns is a subspace of Rn.

Proof: Nul A is a subset of Rn since A has n columns. Must
verify properties a, b and c of the definition of a subspace.

Property (a) Show that 0 is in Nul A. Since , 0 is in

.
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Null Space (cont.)

Property (b) If u and v are in Nul A, show that u + v is in Nul A.
Since u and v are in Nul A,

and .

Therefore

A (u + v) = + = + = .

Property (c) If u is in Nul A and c is a scalar, show that cu in
Nul A:

A (cu) = A (u) = c0 = 0.

Since properties a, b and c hold, A is a subspace of Rn.

Solving Ax = 0 yields an explicit description of Nul A.
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Null Space: Example

Example

Find an explicit description of Nul A where

A =

[
3 6 6 3 9
6 12 13 0 3

]
Solution: Row reduce augmented matrix corresponding to Ax = 0:[

3 6 6 3 9 0
6 12 13 0 3 0

]
∼ · · · ∼

[
1 2 0 13 33 0
0 0 1 −6 −15 0

]


x1
x2
x3
x4
x5

 =


−2x2 − 13x4 − 33x5

x2
6x4 + 15x5

x4
x5


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Null Space: Example (cont.)

= x2


−2
1
0
0
0

+ x4


−13

0
6
1
0

+ x5


−33

0
15
0
1


Then

Nul A =span{u, v,w}
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Null Space: Observations

Observations:
1. Spanning set of Nul A, found using the method in the last
example, is automatically linearly independent:

c1


−2
1
0
0
0

+ c2


−13

0
6
1
0

+ c3


−33

0
15
0
1

 =


0
0
0
0
0


=⇒

c1 = c2 = c3 =

2. If Nul A 6= {0}, the the number of vectors in the spanning set
for Nul A equals the number of free variables in Ax = 0.
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Column Space of a Matrix

The column space of an m × n matrix A (Col A) is the set of all
linear combinations of the columns of A.
If A = [a1 . . . an], then

Col A =Span{a1, . . . , an}

Theorem

The column space of an m × n matrix A is a subspace of Rm.

Why?

Recall that if Ax = b, then b is a linear combination of the
columns of A. Therefore

Col A = {b : b =Ax for some x in Rn}
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Column Space: Example

Example

Find a matrix A such that W = Col A where

W =


 x − 2y

3y
x + y

 : x , y in R

.

Solution:  x − 2y
3y

x + y

 = x

 1
0
1

+ y

 −2
3
1



=

 [ x
y

]
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Column Space: Example (cont.)

Therefore

A =

  .

The column space of an m × n matrix A is all of Rm if and only
if the equation Ax = b has a solution for each b in Rm.
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The Contrast Between Nul A and Col A

Example

Let A =


1 2 3
2 4 7
3 6 10
0 0 1

 .
(a) The column space of A is a subspace of Rk where k = .

(b) The null space of A is a subspace of Rk where k = .

(c) Find a nonzero vector in Col A. (There are infinitely many
possibilities.)

1
2
3
0

+


2
4
6
0

+


3
7

10
1

 =



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The Contrast Between Nul A and Col A (cont.)

Example (cont.)

(d) Find a nonzero vector in Nul A. Solve Ax = 0 and pick one
solution.

1 2 3 0
2 4 7 0
3 6 10 0
0 0 1 0

 row reduces to


1 2 0 0
0 0 1 0
0 0 0 0
0 0 0 0


x1 = −2x2

x2 is free

x3 = 0

=⇒ let x2 = =⇒ x =

 x1
x2
x3

 =

 

Contrast Between Nul A and Col A where A is m × n
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Null Spaces & Column Spaces: Examples

Example

Determine whether each of the following sets is a vector space or
provide a counterexample.

(a) H =

{[
x
y

]
: x − y = 4

}

Solution: Since

=

 
is not in H, H is not a vector space.
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Null Spaces & Column Spaces: Examples (cont.)

Example

(b) V =


 x

y
z

 :
x − y = 0
y + z = 0


Solution: Rewrite

x − y = 0

y + z = 0

as   x
y
z

 =

[
0
0

]

So V =Nul A where A =

[
1 −1 0
0 1 1

]
. Since Nul A is a

subspace of R2, V is a vector space.
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Null Spaces & Column Spaces: Examples (cont.)

Example

(c) S =


 x + y

2x − 3y
3y

 : x , y , z are real


One Solution: Since x + y

2x − 3y
3y

 = x

 1
2
0

+ y

 1
−3

3

 ,

S = span


 1

2
0

 ,
 1
−3

3

 ;

therefore S is a vector space.
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Null Spaces & Column Spaces: Examples (cont.)

Another Solution: Since x + y
2x − 3y

3y

 = x

 1
2
0

+ y

 1
−3

3

 ,

S =Col A where A =

 1 1
2 −3
0 3

;

therefore S is a vector space, since a column space is a vector
space.
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