Math 4377/6308 Advanced Linear Algebra

2.1 Linear Transformations, Null Spaces and Ranges

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

2.1 Linear Transformations, Null Spaces and Ranges

- Linear Transformations: Definition and Properties
- Matrix Transformations
- Matrix Acting on Vector
- Matrix-Vector Multiplication
- Transformation: Domain and Range
- Examples
- Null Spaces and Ranges
- Definition and Theorems
- Null Spaces and Column Spaces of Matrices
- Nullity and Rank
- Definitions and Dimension Theorem
- Ranks of Matrices and Rank Theorem

Linear Transformations

Definition

We call a function $T: V \rightarrow W$ a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have
(a) $T(x+y)=T(x)+T(y)$ and
(b) $T(c x)=c T(x)$
(1) If T is linear, then $T(0)=0$.
(2) T is linear $\Leftrightarrow T(c x+y)=c T(x)+T(y), \forall x, y \in V, c \in F$.
(3) If T is linear, then $T(x-y)=T(x)-T(y), \forall x, y \in V$.
(4) T is linear \Leftrightarrow for $x_{1}, \cdots, x_{n} \in V$ and $a_{1}, \cdots, a_{n} \in F$,

$$
T\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(x_{i}\right)
$$

Special Linear Transformations

(1) The identity transformation $I_{V}: V \rightarrow V: I_{V}(x)=x, \forall x \in V$.
(2) The zero transformation $T_{0}: V \rightarrow W: T_{0}(x)=0, \forall x \in V$.

Matrix Transformation

Suppose A is $m \times n$. The matrix transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: T_{A}(\mathbf{x})=A \mathbf{x}, \forall \in \mathbb{R}^{n}$. Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A \mathbf{x}$.

Solving $A \mathbf{x}=\mathbf{b}$ amounts to finding all _-_ in \mathbf{R}^{n} which are transformed into vector \mathbf{b} in \mathbf{R}^{m} through multiplication by A.

Terminology

\mathbf{R}^{n} : domain of $T \quad \mathbf{R}^{m}$: codomain of T
$T(\mathbf{x})$ in \mathbf{R}^{m} is the image of \mathbf{x} under the transformation T Set of all images $T(\mathbf{x})$ is the range of T

Matrix Transformations: Example

Example

Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$. Define $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
Then if $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right], T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]$

Matrix Transformations: Example

Example

Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -5 & 10 & -15\end{array}\right], \mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}2 \\ -10\end{array}\right]$ and
$\mathbf{c}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$. Define a transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. Find an \mathbf{x} in \mathbf{R}^{3} whose image under T is \mathbf{b}.
b. Is there more than one \mathbf{x} under T whose image is \mathbf{b}.
(uniqueness problem)
c. Determine if \mathbf{c} is in the range of the transformation T. (existence problem)

Solution:

$$
\begin{aligned}
& \text { (a) Solve }-\ldots=-\quad \text { for } \mathbf{x} \text {, or } \\
& {\left[\begin{array}{rrr}
1 & -2 & 3 \\
-5 & 10 & -15
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-10
\end{array}\right]}
\end{aligned}
$$

Matrix Transformations: Example (cont.)

Augmented matrix:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -2 & 3 \\
-5 & 10 & -15 \\
-10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
x_{1}=2 x_{2}-3 x_{3}+2 \\
x_{2} \text { is free } \\
x_{3} \text { is free } \\
\text { Let } \left.x_{2}={ }_{----} \text {and } x_{3}={ }_{--\cdots .}\right]
\end{gathered}
$$

Matrix Transformations: Example (cont.)

(b) Is there an \mathbf{x} for which $T(\mathbf{x})=\mathbf{b}$?

Free variables exist \Downarrow
There is more than one \mathbf{x} for which $T(\mathbf{x})=\mathbf{b}$
(c) Is there an \mathbf{x} for which $T(\mathbf{x})=\mathbf{c}$? This is another way of asking if $A \mathbf{x}=\mathbf{c}$ is \qquad .
Augmented matrix:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 3 \\
-5 & 10 & -15 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

c is not in the

Linear Transformations

If A is $m \times n$, then the transformation $T(\mathbf{x})=A \mathbf{x}$ has the following properties:

$$
\begin{aligned}
& T(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v})=\ldots \\
&=, \\
&
\end{aligned}
$$

\qquad
and

$$
T(c \mathbf{u})=A(c \mathbf{u})=\ldots, \ldots \mathbf{u}=\ldots-
$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^{n} and all scalars c.

Every matrix transformation is a linear transformation.

Null Space and Range

Definition

For linear $T: V \rightarrow W$, the null space (or kernel) $N(T)$ of T is the set of all $x \in V$ such that $T(x)=0: N(T)=\{x \in V: T(x)=0\}$. The range (or image) $R(T)$ of T is the subset of W consisting of all images of vectors in $V: R(T)=\{T(x): x \in V\}$.

Theorem (2.1)

For vector spaces V, W and linear $T: V \rightarrow W, N(T)$ and $R(T)$ are subspaces of V and W, respectively.

Theorem (2.2)

For vector spaces V, W and linear $T: V \rightarrow W$, if $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis for V, then

$$
R(T)=\operatorname{span}(T(\beta))=\boldsymbol{\operatorname { s p a n }}\left(\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}\right)
$$

Null Space of a Matrix

The null space of an $m \times n$ matrix A, written as $\operatorname{Nul} A$, is the set of all solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

$$
\operatorname{Nul} A=\left\{\mathbf{x}: \mathbf{x} \text { is in } \mathbf{R}^{n} \text { and } A \mathbf{x}=\mathbf{0}\right\} \quad \text { (set notation) }
$$

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbf{R}^{n}.
Equivalently, the set of all solutions to a system $A \mathbf{x}=\mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbf{R}^{n}.

Proof: Nul A is a subset of \mathbf{R}^{n} since A has n columns. Must verify properties a, b and c of the definition of a subspace.
Property (a) Show that $\mathbf{0}$ is in $\mathrm{Nul} A$. Since _-_-_-_, $\mathbf{0}$ is in

Null Space (cont.)

Property (b) If \mathbf{u} and \mathbf{v} are in $\operatorname{Nul} A$, show that $\mathbf{u}+\mathbf{v}$ is in $\operatorname{Nul} A$. Since \mathbf{u} and \mathbf{v} are in Nul A,
\qquad and

Therefore

$$
A(\mathbf{u}+\mathbf{v})=
$$

Property (c) If \mathbf{u} is in $\operatorname{Nul} A$ and c is a scalar, show that $c \mathbf{u}$ in Nul A :

$$
A(c \mathbf{u})=\ldots(\mathbf{u})=c \mathbf{0}=\mathbf{0} .
$$

Since properties a, b and c hold, A is a subspace of \mathbf{R}^{n}. Solving $A \mathbf{x}=\mathbf{0}$ yields an explicit description of $\mathrm{Nu} A$.

Null Space: Example

Example

Find an explicit description of $\operatorname{Nul} A$ where

$$
A=\left[\begin{array}{rrrrr}
3 & 6 & 6 & 3 & 9 \\
6 & 12 & 13 & 0 & 3
\end{array}\right]
$$

Solution: Row reduce augmented matrix corresponding to $A \mathbf{x}=\mathbf{0}$:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccccc}
3 & 6 & 6 & 3 & 9 & 0 \\
6 & 12 & 13 & 0 & 3 & 0
\end{array}\right]} & \sim \cdots \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & 13 & 33 \\
0 & 0 & 1 & -6 & -15
\end{array} 0\right.
\end{array}\right]
$$

Null Space: Example (cont.)

$$
=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-13 \\
0 \\
6 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-33 \\
0 \\
15 \\
0 \\
1
\end{array}\right]
$$

Then
$\operatorname{Nul} A=\operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$

Null Space: Observations

Observations:

1. Spanning set of $\operatorname{Nul} A$, found using the method in the last example, is automatically linearly independent:

$$
c_{1}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-13 \\
0 \\
6 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-33 \\
0 \\
15 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
c_{1}=-\ldots \quad c_{2}=-
$$

2. If $\mathrm{Nul} A \neq\{\mathbf{0}\}$, the the number of vectors in the spanning set for $\mathrm{Nul} A$ equals the number of free variables in $A \mathbf{x}=\mathbf{0}$.

Column Space of a Matrix

The column space of an $m \times n$ matrix $A(\operatorname{Col} A)$ is the set of all linear combinations of the columns of A.
If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}
$$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbf{R}^{m}.
Why?
Recall that if $A \mathbf{x}=\mathbf{b}$, then \mathbf{b} is a linear combination of the columns of A. Therefore

$$
\operatorname{Col} A=\left\{\mathbf{b}: \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \text { in } \mathbf{R}^{n}\right\}
$$

Column Space: Example

Example

Find a matrix A such that $W=\operatorname{Col} A$ where

$$
W=\left\{\left[\begin{array}{c}
x-2 y \\
3 y \\
x+y
\end{array}\right]: x, y \text { in } \mathbf{R}\right\} .
$$

Solution:

$$
\begin{gathered}
{\left[\begin{array}{c}
x-2 y \\
3 y \\
x+y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+y\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]} \\
=\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{gathered}
$$

Example (cont.)

Therefore

$$
A=[\quad] .
$$

The column space of an $m \times n$ matrix A is all of \mathbf{R}^{m} if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbf{R}^{m}.

The Contrast Between Nul A and $\operatorname{Col} A$

Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1\end{array}\right]$.
(a) The column space of A is a subspace of \mathbf{R}^{k} where $k=$
(b) The null space of A is a subspace of \mathbf{R}^{k} where $k=$ \qquad
(c) Find a nonzero vector in $\operatorname{Col} A$. (There are infinitely many possibilities.)

The Contrast Between Nul A and $\operatorname{Col} A$ (cont.)

Example (cont.)

(d) Find a nonzero vector in Nul A. Solve $A \mathbf{x}=\mathbf{0}$ and pick one solution.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 2 & 3 & 0 \\
2 & 4 & 7 & 0 \\
3 & 6 & 10 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \text { row reduces to }\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& x_{1}=-2 x_{2} \\
& x_{2} \text { is free } \\
& x_{3}=0
\end{aligned}
$$

Contrast Between Nul A and $\operatorname{Col} A$ where A is $m \times n$

Null Spaces \& Column Spaces: Examples

Example

Determine whether each of the following sets is a vector space or provide a counterexample.

$$
\text { (a) } H=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x-y=4\right\}
$$

Solution: Since
is not in H, H is not a vector space.

Null Spaces \& Column Spaces: Examples (cont.)

Example

(b) $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: \begin{array}{l}x-y=0 \\ y+z=0\end{array}\right\}$

Solution: Rewrite

$$
\begin{aligned}
& x-y=0 \\
& y+z=0
\end{aligned}
$$

as

$$
]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So $V=\operatorname{Nul} A$ where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1\end{array}\right]$. Since $\operatorname{Nul} A$ is a subspace of \mathbf{R}^{2}, V is a vector space.

Null Spaces \& Column Spaces: Examples (cont.)

Example

(c) $S=\left\{\left[\begin{array}{r}x+y \\ 2 x-3 y \\ 3 y\end{array}\right]: x, y, z\right.$ are real $\}$

One Solution: Since

$$
\begin{gathered}
{\left[\begin{array}{r}
x+y \\
2 x-3 y \\
3 y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+y\left[\begin{array}{r}
1 \\
-3 \\
3
\end{array}\right]} \\
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-3 \\
3
\end{array}\right]\right\} ;
\end{gathered}
$$

therefore S is a vector space.

Null Spaces \& Column Spaces: Examples (cont.)

Another Solution: Since

$$
\begin{aligned}
& {\left[\begin{array}{r}
x+y \\
2 x-3 y \\
3 y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+y\left[\begin{array}{r}
1 \\
-3 \\
3
\end{array}\right],} \\
& S=\operatorname{Col} A \quad \text { where } A=\left[\begin{array}{cc}
1 & 1 \\
2 & -3 \\
0 & 3
\end{array}\right] ;
\end{aligned}
$$

therefore S is a vector space, since a column space is a vector space.

