Math 4377/6308 Advanced Linear Algebra 2.2 Properties of Linear Transformations, Matrices.

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

2.2 Properties of Linear Transformations, Matrices.

- Null Spaces and Ranges
- Injective, Surjective, and Bijective
- Dimension Theorem
- Nullity and Rank
- Linear Map and Values on Basis
- Coordinate Vectors
- Matrix Representations

Linear Map and Null Space

Theorem (2.1-a)

Let $T : V \to W$ be a linear map. Then $\operatorname{null}(T)$ is a subspace of V.

Proof. We need to show that $0 \in \text{null}(T)$ and that null(T) is closed under addition and scalar multiplication. By linearity, we have

T(0) = T(0+0) = T(0) + T(0)

so that T(0) = 0. Hence $0 \in \operatorname{null}(T)$. For closure under addition, let $u, v \in \operatorname{null}(T)$. Then

$$T(u+v) = T(u) + T(v) = 0 + 0 = 0,$$

and hence $u + v \in \text{null}(T)$. Similarly, for closure under scalar multiplication, let $u \in \text{null}(T)$ and $a \in \mathbb{F}$. Then

$$T(au) = aT(u) = a0 = 0,$$

and so $au \in \operatorname{null}(T)$.

Jiwen He, University of Houston

(日) (同) (三) (三)

Injective, Surjective, and Bijective Linear Maps

Definition

The linear map $T : V \to W$ is called **injective (one-to-one)** if, for all $u, v \in V$, the condition Tu = Tv implies that u = v. In other words, different vectors in V are mapped to different vectors in W.

Definition

The linear map $T: V \to W$ is called **surjective (onto)** if range(T) = W.

Definition

A linear map $T: V \to W$ is called **bijective** if T is both injective and surjective.

Theorem (2.4)

Let $T : V \to W$ be a linear map. Then T is injective if and only if $\operatorname{null}(T) = \{0\}.$

Proof.

(" \Longrightarrow ") Suppose that T is injective. Since null (T) is a subspace of V, we know that $0 \in$ null (T). Assume that there is another vector $v \in V$ that is in the kernel. Then T(v) = 0 = T(0). Since T is injective, this implies that v = 0, proving that null $(T) = \{0\}$. (" \Leftarrow ") Assume that null $(T) = \{0\}$, and let $u, v \in V$ be such that Tu = Tv. Then 0 = Tu - Tv = T(u - v) so that $u - v \in$ null (T). Hence u - v = 0, or, equivalently, u = v. This shows that T is indeed injective.

(日) (同) (三) (三)

Linear Maps and Ranges

Theorem (2.1-b)

Let $T : V \to W$ be a linear map. Then range(T) is a subspace of V.

Proof. We need to show that $0 \in \operatorname{range}(T)$ and that $\operatorname{range}(T)$ is closed under addition and scalar multiplication. We already showed that T0 = 0 so that $0 \in \operatorname{range}(T)$.

For closure under addition, let $w_1, w_2 \in \text{range}(T)$. Then there exist $v_1, v_2 \in V$ such that $Tv_1 = w_1$ and $Tv_2 = w_2$. Hence

$$T(v_1 + v_2) = Tv_1 + Tv_2 = w_1 + w_2,$$

and so $w_1 + w_2 \in \operatorname{range}(T)$.

For closure under scalar multiplication, let $w \in \text{range}(T)$ and $a \in \mathbb{F}$. Then there exists a $v \in V$ such that Tv = w. Thus

$$T(av) = aTv = aw,$$

and so $aw \in \operatorname{range}(T)$.

Jiwen He, University of Houston

(日) (同) (三) (三)

Theorem (2.3, Dimension Theorem)

Let V be a finite-dimensional vector space and $T : V \rightarrow W$ be a linear map. Then range(T) is a finite-dimensional subspace of W and

 $\dim(V) = \dim(\operatorname{null}(T)) + \dim(\operatorname{range}(T)).$

Proof. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$. Since null (T) is a subspace of V, we know that null (T) has a basis (u_1, \ldots, u_m) . This implies that dim(null (T)) = m. By the Basis Extension Theorem, it follows that (u_1, \ldots, u_m) can be extended to a basis of V, say $(u_1, \ldots, u_m, v_1, \ldots, v_n)$, so that dim(V) = m + n.

The theorem will follow by showing that (Tv_1, \ldots, Tv_n) is a basis of range (T) since this would imply that range (T) is finite-dimensional and dim(range (T)) = n, proving Equation (6.4).

イロト イポト イヨト イヨト

Dimension Theorem (cont.)

Since $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ spans V, every $v \in V$ can be written as a linear combination of these vectors; i.e.,

$$v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n,$$

where $a_i, b_i \in \mathbb{F}$. Applying T to v, we obtain

$$Tv = b_1 T v_1 + \dots + b_n T v_n,$$

where the terms Tu_i disappeared since $u_i \in \text{null}(T)$. This shows that (Tv_1, \ldots, Tv_n) indeed spans range (T).

To show that (Tv_1, \ldots, Tv_n) is a basis of range (T), it remains to show that this list is linearly independent. Assume that $c_1, \ldots, c_n \in \mathbb{F}$ are such that

$$c_1Tv_1 + \dots + c_nTv_n = 0.$$

Jiwen He, University of Houston

<ロ> (日) (日) (日) (日) (日)

By linearity of T, this implies that

$$T(c_1v_1 + \dots + c_nv_n) = 0,$$

and so $c_1v_1 + \cdots + c_nv_n \in \text{null}(T)$. Since (u_1, \ldots, u_m) is a basis of null (T), there must exist scalars $d_1, \ldots, d_m \in \mathbb{F}$ such that

$$c_1v_1 + \dots + c_nv_n = d_1u_1 + \dots + d_mu_m.$$

However, by the linear independence of $(u_1, \ldots, u_m, v_1, \ldots, v_n)$, this implies that all coefficients $c_1 = \cdots = c_n = d_1 = \cdots = d_m = 0$. Thus, (Tv_1, \ldots, Tv_n) is linearly independent, and we are done.

(日) (周) (三) (三)

Surjective Linear Map

Corollary

Let $T: V \to W$ be a linear map.

- **(1)** If $\dim(V) > \dim(W)$, then T is not injective.
- **2** If $\dim(V) < \dim(W)$, then T is not surjective.

Proof. By Theorem 6.5.1, we have that

$$\dim(\operatorname{null}(T)) = \dim(V) - \dim(\operatorname{range}(T))$$
$$\geq \dim(V) - \dim(W) > 0.$$

Since T is injective if and only if $\dim(\operatorname{null}(T)) = 0$, T cannot be injective. Similarly,

$$\dim(\operatorname{range}(T)) = \dim(V) - \dim(\operatorname{null}(T))$$
$$\leq \dim(V) < \dim(W),$$

and so range (T) cannot be equal to W. Hence, T cannot be surjective.

< ロ > < 同 > < 三 > < 三

Definition

For vector spaces V, W and linear $T : V \to W$, if null(T), i.e., N(T), and range(T), i.e., R(T), are finite-dimensional, the nullity and the rank of T are the dimensions of null(T) and range(T), respectively.

Theorem (Dimension Theorem, 2.3)

For vector spaces V, W and linear $T:V\rightarrow W,$ if V is finite-dimensional then

 $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$

(人間) トイヨト イヨト

Rank of a Matrix

Rank

The **rank** of A is the dimension of the column space of A.

rank $A = \dim$ Col A = # of pivot columns of $A = \dim$ Row A

The set of all linear combinations of the row vectors of a matrix A is called the **row space** of A and is denoted by Row A.

 $\operatorname{Col} A^T = \operatorname{Row} A$

Note the following:

- dim Col A = # of pivots of $A = \dim \text{Row } A$.
- dim Nul A = # of free variables = # of nonpivot columns of A.

坍

Theorem (Rank Theorem)

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

rank $A + \dim Nul A = n$.

Jiwen He, University of Houston

- ∢ ⊢⊒ →

.3 / 1

Rank Theorem: Example

Since Row
$$A = \text{Col } A^T$$
, rank $A = \text{rank } A^T$

Example

Suppose that a 5 × 8 matrix A has rank 5. Find dim Nul A, dim Row A and rank A^{T} . Is Col $A = \mathbb{R}^{5}$?

Solution:

Since rank A = # of pivots in A = 5, there is a pivot in every row. So the columns of A span \mathbb{R}^5 . Hence Col $A = \mathbb{R}^5$.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebr

Spring, 2015

Rank Theorem: Example

Example

For a 9 \times 12 matrix A, find the smallest possible value of \dim Nul A.

Solution:

rank
$$A + \dim$$
 Nul $A = 12$

dim Nul
$$A = 12 - \underline{\operatorname{rank}} A$$

largest possible value=____

smallest possible value of dim Nul A = _____

Theorem (2.5)

For vector spaces V, W of equal (finite) dimension and linear $T: V \rightarrow W$, the following are equivalent:

- (a) T is one-to-one.
- (b) T is onto.

(c)
$$\operatorname{rank}(T) = \dim(V)$$

Linear Map and Values on Basis

Theorem (2.6)

Let (v_1, \dots, v_n) be a basis of V and (w_1, \dots, w_n) be an arbitrary list of vectors in W. Then there exists a unique linear map $T: V \to W$ such that $T(v_i) = w_i, \forall i = 1, 2, \dots, n$.

Proof. First we verify that there is at most one linear map T with $T(v_i) = w_i$. Take any $v \in V$. Since (v_1, \ldots, v_n) is a basis of V there are unique scalars $a_1, \ldots, a_n \in \mathbb{F}$ such that $v = a_1v_1 + \cdots + a_nv_n$. By linearity, we have

$$T(v) = T(a_1v_1 + \dots + a_nv_n) = a_1T(v_1) + \dots + a_nT(v_n) = a_1w_1 + \dots + a_nw_n,$$
(6.3)

and hence T(v) is completely determined. To show existence, use Equation (6.3) to define T. It remains to show that this T is linear and that $T(v_i) = w_i$. These two conditions are not hard to show and are left to the reader.

Corollary

Suppose $\{v_1, \dots, v_n\}$ is a finite basis for V, then if $U, T: V \to W$ are linear and $U(v_i) = T(v_i)$ for $i = 1, \dots, n$, then U = T.

Jiwen He, University of Houston

坍

Matrix Transformations: Example

Example

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{y}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
Suppose $T : \mathbf{R}^2 \to \mathbf{R}^3$ is a linear transformation which maps \mathbf{e}_1 into \mathbf{y}_1 and \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution: First, note that

$$T(\mathbf{e}_1) = \dots$$
 and $T(\mathbf{e}_2) = \dots$.
 $\dots \mathbf{e}_1 + \dots \mathbf{e}_2 = \begin{bmatrix} 3\\ 2 \end{bmatrix}$

Jiwen He, University of Houston

Also

Math 4377/6308, Advanced Linear Algebr

Matrix Transformations: Example (cont.)

Then

$$T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) = T\left(__\mathbf{e}_1 + __\mathbf{e}_2\right) =$$
$$__T\left(\mathbf{e}_1\right) + __T\left(\mathbf{e}_2\right) =$$

Jiwen He, University of Houston

Spring, 2015

Matrix Transformations: Example (cont.)

Also

$$T\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right) = T\left(___\mathbf{e}_1 + ___\mathbf{e}_2\right) =$$
$$___T\left(\mathbf{e}_1\right) + ___T\left(\mathbf{e}_2\right) =$$

Jiwen He, University of Houston

Spring, 2015

э

Coordinate Vectors

Definition

For a finite-dimensional vector space V, an **ordered basis** for V is a basis for V with a specific order. In other words, it is a finite sequence of linearly independent vectors in V that generates V.

Definition

Let $\beta = \{u_1, \cdots, u_n\}$ be an ordered basis for V, and for $x \in V$ let a_1, \cdots, a_n be the unique scalars such that

$$x=\sum_{i=1}^n a_i u_i.$$

The **coordinate vector** of x relative to β is

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

Jiwen He, University of Houston

Coordinate Systems: Example

Example

Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ and let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ where $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$.

Solution:

If
$$[\mathbf{x}]_{\beta} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
, then $\mathbf{x} = \dots \begin{bmatrix} 3\\1 \end{bmatrix} + \dots \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.
If $[\mathbf{x}]_{E} = \begin{bmatrix} 6\\5 \end{bmatrix}$, then $\mathbf{x} = \dots \begin{bmatrix} 1\\0 \end{bmatrix} + \dots \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

э

3

Coordinate Systems: Example (cont.)

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Spring, 2015

23 /

Matrix Representations

Definition

Suppose V, W are finite-dimensional vector spaces with ordered bases $\beta = \{v_1, \dots, v_n\}$, $\gamma = \{w_1, \dots, w_m\}$. For linear $T: V \to W$, there are unique scalars $a_{ii} \in F$ such that

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i \quad \text{ for } 1 \leq j \leq n.$$

The $m \times n$ matrix A defined by $A_{ij} = a_{ij}$ is the **matrix** representation of T in the ordered bases β and γ , written $A = [T]_{\beta}^{\gamma}$. If V = W and $\beta = \gamma$, then $A = [T]_{\beta}$.

Note that the *j*th column of A is $[T(v_j)]_{\gamma}$, and if $[U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma}$ for linear $U: V \to W$, then U = T.

< ロト < 同ト < ヨト < ヨト

Matrix of Linear Transformation: Example

Example

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \text{standard matrix of the linear transformation } T$$
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} =$$
(fill-in)

Matrix of Linear Transformation: Example

Example

Find the standard matrix of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

Identity Matrix

Identity Matrix

 I_n is an $n \times n$ matrix with 1's on the main left to right diagonal and 0's elsewhere. The ith column of I_n is labeled \mathbf{e}_i .

Example

$$l_3 = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that

Jiwen He, University of Houston

Spring, 2015

Addition and Scalar Multiplication

Definition

Let T, $U: V \to W$ be arbitrary functions of vector spaces V, W over F. Then T + U, $aT: V \to W$ are defined by (T + U)(x) = T(x) + U(x) and (aT)(x) = aT(x), respectively, for all $x \in V$ and $a \in F$.

Theorem (2.7)

With the operations defined above, for vector spaces V, W over F and linear T, U : V \rightarrow W:

(a)
$$aT + U$$
 is linear for all $a \in F$

(b) The collection of all linear transformations from V to W is a vector space over F

Definition

For vector spaces V, W over F, the vector space of all linear transformations from V into W is denoted by $\mathcal{L}(V, W)$, or just $\mathcal{L}(V)$ if V = W.

Jiwen He, University of Houston

8 / 1

버

Theorem (2.8)

For finite-dimensional vector spaces V, W with ordered bases β , γ , and linear transformations T, $U : V \rightarrow W$:

(a)
$$[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$
.

(b)
$$[aT]^\gamma_eta=a[T]^\gamma_eta$$
 for all scalars a.

