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Linear Map and Null Space

Theorem (2.1-a)
Let T : V — W be a linear map. Then null(T) is a subspace of V.

Proof. We need to show that 0 € null (T) and that null (7') is closed under addition and
scalar multiplication. By linearity, we have

T(0) = T(0 + 0) = T(0) + T(0)
so that T'(0) = 0. Hence 0 € null (T'). For closure under addition, let u,v € null (T'). Then
Tu+v)=T(u)+T(v)=0+0=0,

and hence u+v € null (T'). Similarly, for closure under scalar multiplication, let u € null (T°)
and a € F. Then

T(au) = aT(u) = a0 =0,

and so au € null (T'). O 'H
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Injective, Surjective, and Bijective Linear Maps

Definition

The linear map T : V — W is called injective (one-to-one) if, for
all u,v € V, the condition Tu = Tv implies that u = v. In other
words, different vectors in V' are mapped to different vectors in W'.

Definition

The linear map T : V — W is called surjective (onto) if
range(T) = W.

| A

Definition
A linear map T : V — W is called bijective if T is both injective
and surjective.
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Injective Linear Map

Theorem (2.4)

Let T :V — W be a linear map. Then T is injective if and only if
null(T) = {0}.

Proof.

(“=") Suppose that T is injective. Since null (T) is a subspace of V, we know that 0 €
null (7'). Assume that there is another vector v € V' that is in the kernel. Then T'(v) =0 =
T(0). Since T is injective, this implies that v = 0, proving that null (T") = {0}.

(“<=") Assume that null (7)) = {0}, and let u,v € V be such that Tu = Tw. Then

0=Tu—Tv="T(u—v)so that v — v € null (T'). Hence u— v = 0, or, equivalently, u = v.
This shows that 7" is indeed injective. [m|

L
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Linear Maps and Ranges

Theorem (2.1-b)

Let T : V — W be a linear map. Then range(T) is a subspace of
V.

Proof. We need to show that 0 € range (T) and that range (T') is closed under addition and
scalar multiplication. We already showed that 770 = 0 so that 0 € range (T').
For closure under addition, let ws, ws € range (T'). Then there exist vy, vs € V such that

Tvy = wy and Tve = we. Hence
T(vy +v2) = Tvy + Ty = wy + wy,
and so w; + w, € range (7).
For closure under scalar multiplication, let w € range (T') and a € F. Then there exists
a v € V such that Tv = w. Thus
T(av) = aTv = aw,

and so aw € range (T). O 'H
Jiwen He, University of Houston



Dimension Theorem

Theorem (2.3, Dimension Theorem)

Let V be a finite-dimensional vector space and T : V — W be a
linear map. Then range(T) is a finite-dimensional subspace of W
and

dim(V) = dim(null(T)) + dim(range(T)).

Proof. Let V be a finite-dimensional vector space and T' € L(V, W). Since null (T) is a sub-
space of V', we know that null (T) has a basis (uy, ..., uy). This implies that dim(null (7)) =
m. By the Basis Extension Theorem, it follows that (us,...,u,,) can be extended to a basis

of V., say (ui,...,Un,V1,...,0,), so that dim(V) = m + n.
The theorem will follow by showing that (T'wy, ..., Tv,) is a basis of range (T) since this
would imply that range (T) is finite-dimensional and dim(range (T")) = n, proving Equa-

tion (6.4).
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Dimension Theorem (cont.)

Since (ug, ..., Uy, V1, ..., 0,) spans V, every v € V can be written as a linear combination

of these vectors; i.e.,
U= aguy + - Qi + bivgr + - - 4 byop,
where a;,b; € F. Applying T' to v, we obtain
Tv=0b0Tv+ -+ b, Top,

where the terms T'u; disappeared since u; € null (T'). This shows that (Tvy,...,Tv,) indeed
spans range (7).

To show that (Tvy,...,Tv,) is a basis of range (T'), it remains to show that this list is

linearly independent. Assume that cy, ..., ¢, € F are such that

aTvy+ -+ c,Tv, =0.

Jiwen He, University of Houston



Dimension Theorem (con

By linearity of T, this implies that
T(civ1 + -+ ) = 0,

and so cjv1 + -+ + ¢, € null (7). Since (uy, ..., Uy) is a basis of null (T), there must exist

scalars dy, ..., d,, € F such that

cvr - F Catn = dyty + -+ dinlin.

However, by the linear independence of (us,. .., Up,v1,...,v,), this implies that all coeffi-
cients ¢y =+ =¢, =dy =+ =dp = 0. Thus, (Tvy,...,Tv,) is linearly independent, and
we are done. O
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Surjective Linear Map

Let T:V — W be a linear map.
@ If dim(V) > dim(W), then T is not injective.
@ If dim(V) < dim(W), then T is not surjective.

Proof. By Theorem [6.5.1] we have that

dim(null (7)) = dim(V') — dim(range (7))
> dim(V) — dim(W) > 0.

Since T is injective if and only if dim(null (7)) = 0, 7' cannot be injective.

Similarly,
dim(range (7)) = dim(V) — dim(null (7))
< dim(V) < dim(W),
and so range (T') cannot be equal to . Hence, T cannot be surjective. O [ﬂ
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Nullity and Rank

Definition

For vector spaces V, W and linear T : V — W, if null(T), i.e.,
N(T), and range(T), i.e, R(T), are finite-dimensional, the nullity
and the rank of T are the dimensions of null(7) and range(T),
respectively.

Theorem (Dimension Theorem, 2.3)

For vector spaces V', W and linear T : V. — W, if V is
finite-dimensional then

nullity(T) + rank(T) = dim(V)

Jiwen He, University of Houston



Rank of a Matrix

The rank of A is the dimension of the column space of A.

‘ rank A = dim Col A =# of pivot columns of A = dim Row A ‘

The set of all linear combinations of the row vectors of a matrix A
is called the row space of A and is denoted by Row A.

| Col AT = Row A

Note the following:
o dim Col A = # of pivots of A= dim Row A.

@ dim Nul A = # of free variables = # of nonpivot columns of [l]l
A.

Jiwen He, University of Houston



Rank Theorem

rank A + dim Nul A = n

SN—— N———r ~~
# of pivot # of nonpivot # of
columns columns columns

of A of A of A

Theorem (Rank Theorem)

The dimensions of the column space and the row space of an m x n
matrix A are equal. This common dimension, the rank of A, also
equals the number of pivot positions in A and satisfies the equation

rank A 4+ dim Nul A = n. [l]l

Jiwen He, University of Houston



Rank Theorem: Example

Since Row A = Col AT, ‘rank A= rank AT ‘ J

Suppose that a 5 x 8 matrix A has rank 5. Find dim Nul A, dim
Row A and rank AT. Is Col A= R%?

Solution:
rank A + dim Nul A = n
—— —_—— ~—~
) " )
5 ? 8

54 dim Nul A=38 = dim Nul A= _____
dim Row A=rank A= _____
= rank AT = rank _____ = _____
Since rank A = # of pivots in A =5, there is a pivot in every row. [ﬂ
So the columns of A span R®>. Hence Col A= R5.

Jiwen He, University of Houston



Rank Theorem: Example

For a 9 x 12 matrix A, find the smallest possible value of dim Nul
A.

Solution:

rank A + dim Nul A =12

dim Nul A=12 —rank A
——

largest possible value=_____

smallest possible value of dim Nul A= _____

Jiwen He, University of Houston



Properties of Linear Transformations

Theorem (2.5)
For vector spaces V/, W of equal (finite) dimension and linear
T :V — W, the following are equivalent:

(a) T is one-to-one.

(b) T is onto.

(c) rank(T) = dim(V)

Jiwen He, University of Houston



Linear Map and Values on Basis

Theorem (2.6)

Let (vi,---,vp) be a basis of V and (wy,--- ,w,) be an arbitrary
list of vectors in W. Then there exists a unique linear map
T:V — W such that T(v;) =w;, Vi=1,2,--- n.

Proof. First we verify that there is at most one linear map 7 with T'(v;) = w;. Take any
v € V. Since (v1,...,v,) is a basis of V there are unique scalars ai,...,a, € F such that
v = a0, + - + a,v,. By linearity, we have

T(v) =T(a1v1 + -+ + apvn) = 1T (v1) + -+ - + a,T(vy) = qqwy + -+ + awy, (6.3)
and hence T'(v) is completely determined. To show existence, use Equation (63) to define

T. It remains to show that this 7' is linear and that T'(v;) = w;. These two conditions are
not hard to show and are left to the reader.

0

Suppose {v1,- -, Vv,} is a finite basis for V, thenif U, T : V — W [H
are linear and U(v;) = T(v;) fori=1,---  n, then U=T.

Jiwen He, University of Houston



Matrix Transformations: Example

1 0 1 0
Letelz[o],ezz[l],ylz 0 andy, = | 1
2 1

Suppose T : R?> — R3 is a linear transformation which maps e;

into y; and ey into y». Find the images of [ g ] and [ ))Zl ]
2

Solution: First, note that

Also

e+ e = [ 3 ] [ll-l

Jiwen He, University of Houston



Matrix Transformations: Example (cont.)

Then
3
(2] o
—T(e1)+ _-T(e) =
X2 * - °
2 . |8
4x3
le 2
N * . 30
H 2 3t o =
T (3e1 + 2e5) = 3T (e1) + 27T (e2) [

Jiwen He, University of Houston



Matrix Transformations: Example (cont.)

Also

Jiwen He, University of Houston



Coordinate Vectors

For a finite-dimensional vector space V/, an ordered basis for V is

a basis for V with a specific order. In other words, it is a finite
sequence of linearly independent vectors in V that generates V.

Definition
Let B ={u1, - ,un} be an ordered basis for V, and for x € V let
ai, - -+, a, be the unique scalars such that

n
X = E aju;.
i=1

The coordinate vector of x relative to 3 is

ai

[Xlg=1| :
N B

Jiwen He, University of Houston



Coordinate Systems: Example

Let 5 = {by,by} where b; = [ :I’ ] and by, = [ (_i)

] and let

E:{el,ez}whereelz[é] andezz[g].

Solution:

[ 2] 3] [0
If [x]5 = _3_,thenx—,,,,_1_+,,,,_1_ =

[ 6] [ 1] [0 | |
If [x]z = 5 ,thenx:,,,,_o_ —i—,,,,_ | =

Jiwen He, University of Houston



Coordinate Systems: Example (cont.)

le

1 2 3 4 5 6 7

Standard graph paper B— graph paper

Jiwen He, University of Houston




Matrix Representations

Definition
Suppose V, W are finite-dimensional vector spaces with ordered
bases 8 = {v1, - ,vp}, v ={wa, -, wpn}. For linear

T :V — W, there are unique scalars a;; € F such that
m
T(Vj) = Zaijwi for1<j<n.
i=1

The m x n matrix A defined by A;; = aj; is the matrix
representation of T in the ordered bases § and ~y, written
A=[T]}. If V=W and 3 =, then A= [T]s.

Note that the jth column of A'is [T(v;)],, and if [U]} = [T]} for
linear U: V — W, then U = T. By

Jiwen He, University of Houston



Matrix of Linear Transformation: Example

77 ¥ X1 — 2X2
?2 2 [ Xl } — Axq
? 7 2 3x1 + 2x2
Solution:
7?2 7
? 7 | = standard matrix of the linear transformation T
7?2 7
77
? 7| =[T(e1) T(er) | = (fill-in)
?7 7

Jiwen He, University of Houston



Matrix of Linear Transformation: Example

Find the standard matrix of the linear transformation T : R> — R?
which rotates a point about the origin through an angle of 7
radians (counterclockwise).

T(er) = T(es) = W

Jiwen He, University of Houston



Identity Matrix

Identity Matrix

I, is an n x n matrix with 1's on the main left to right diagonal
and 0's elsewhere. The ith column of /, is labeled e;.

v

1 00

/3:[el (=) e3]= 010

0 01

Note that
1 00 X1-
hx=1|0 1 0 X2
0 01 X3_
=____ + |: + =____ lﬂl

Jiwen He, University of Houston



Addition and Scalar Multiplication

Definition

Let T, U:V — W be arbitrary functions of vector spaces V, W

over F. Then T 4+ U, aT : V — W are defined by

(T + U)(x) = T(x)+ U(x) and (aT)(x) = aT(x), respectively,

forall xe V and a € F.

Theorem (2.7)

With the operations defined above, for vector spaces V', W over F

and linear T, U : V — W:

(a) aT + U is linear for all a € F

(b) The collection of all linear transformations from V to W is a
vector space over F

Definition

For vector spaces V, W over F, the vector space of all linear
transformations from V into W is denoted by £(V, W), or just [l]l
L(V)ifV=W.

Jiwen He, University of Houston




Matrix Representations

Theorem (2.8)

For finite-dimensional vector spaces V', W with ordered bases (3, v,
and linear transformations T, U : V — W':

(@) [T+ U3 =I[Tl5+ [Ul5.
(b) [aT]} = a[T]} for all scalars a.

Jiwen He, University of Houston
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