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Linear Map and Null Space

Theorem (2.1-a)

Let T : V →W be a linear map. Then null(T ) is a subspace of V .
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Injective, Surjective, and Bijective Linear Maps

Definition

The linear map T : V →W is called injective (one-to-one) if, for
all u, v ∈ V , the condition Tu = Tv implies that u = v . In other
words, different vectors in V are mapped to different vectors in W .

Definition

The linear map T : V →W is called surjective (onto) if
range(T ) = W .

Definition

A linear map T : V →W is called bijective if T is both injective
and surjective.
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Injective Linear Map

Theorem (2.4)

Let T : V →W be a linear map. Then T is injective if and only if
null(T ) = {0}.
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Linear Maps and Ranges

Theorem (2.1-b)

Let T : V →W be a linear map. Then range(T ) is a subspace of
V .
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Dimension Theorem

Theorem (2.3, Dimension Theorem)

Let V be a finite-dimensional vector space and T : V →W be a
linear map. Then range(T ) is a finite-dimensional subspace of W
and

dim(V ) = dim(null(T )) + dim(range(T )).
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Dimension Theorem (cont.)
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Dimension Theorem (cont.)
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Surjective Linear Map

Corollary

Let T : V →W be a linear map.

1 If dim(V ) > dim(W ), then T is not injective.

2 If dim(V ) < dim(W ), then T is not surjective.
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Nullity and Rank

Definition

For vector spaces V , W and linear T : V →W , if null(T ), i.e.,
N(T ), and range(T ), i.e, R(T ), are finite-dimensional, the nullity
and the rank of T are the dimensions of null(T ) and range(T ),
respectively.

Theorem (Dimension Theorem, 2.3)

For vector spaces V , W and linear T : V →W, if V is
finite-dimensional then

nullity(T ) + rank(T ) = dim(V )
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Rank of a Matrix

Rank

The rank of A is the dimension of the column space of A.

rank A = dim Col A =# of pivot columns of A = dim Row A .

The set of all linear combinations of the row vectors of a matrix A
is called the row space of A and is denoted by Row A.

Col AT = Row A .

Note the following:

dim Col A = # of pivots of A = dim Row A.

dim Nul A = # of free variables = # of nonpivot columns of
A.
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Rank Theorem

rank A︸ ︷︷ ︸ + dim Nul A︸ ︷︷ ︸ = n︸︷︷︸
l l l

# of pivot
columns

of A




# of nonpivot
columns

of A




# of
columns

of A


Theorem (Rank Theorem)

The dimensions of the column space and the row space of an m× n
matrix A are equal. This common dimension, the rank of A, also
equals the number of pivot positions in A and satisfies the equation

rank A + dim Nul A = n.
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Rank Theorem: Example

Since Row A = Col AT , rank A = rank AT .

Example

Suppose that a 5× 8 matrix A has rank 5. Find dim Nul A, dim
Row A and rank AT . Is Col A = R5?

Solution:
rank A︸ ︷︷ ︸ + dim Nul A︸ ︷︷ ︸ = n︸︷︷︸
l ↓ l
5 ? 8

5 + dim Nul A = 8 ⇒ dim Nul A =

dim Row A = rank A =
⇒ rank AT = rank =

Since rank A = # of pivots in A = 5, there is a pivot in every row.
So the columns of A span R5. Hence Col A = R5.
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Rank Theorem: Example

Example

For a 9× 12 matrix A, find the smallest possible value of dim Nul
A.

Solution:

rank A + dim Nul A = 12

dim Nul A = 12− rank A︸ ︷︷ ︸
largest possible value=

smallest possible value of dim Nul A =
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Properties of Linear Transformations

Theorem (2.5)

For vector spaces V , W of equal (finite) dimension and linear
T : V →W, the following are equivalent:

(a) T is one-to-one.

(b) T is onto.

(c) rank(T ) = dim(V )
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Linear Map and Values on Basis

Theorem (2.6)

Let (v1, · · · , vn) be a basis of V and (w1, · · · ,wn) be an arbitrary
list of vectors in W . Then there exists a unique linear map
T : V →W such that T (vi ) = wi , ∀i = 1, 2, · · · , n.

Corollary

Suppose {v1, · · · , vn} is a finite basis for V , then if U, T : V →W
are linear and U(vi ) = T (vi ) for i = 1, · · · , n, then U = T .
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Matrix Transformations: Example

Example

Let e1 =

[
1
0

]
, e2 =

[
0
1

]
, y1 =

 1
0
2

 and y2 =

 0
1
1

.

Suppose T : R2 → R3 is a linear transformation which maps e1

into y1 and e2 into y2. Find the images of

[
3
2

]
and

[
x1
x2

]
.

Solution: First, note that

T (e1) = and T (e2) = .

Also

e1 + e2 =

[
3
2

]
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Matrix Transformations: Example (cont.)

Then

T

([
3
2

])
= T ( e1 + e2) =

T (e1) + T (e2) =

T (3e1 + 2e2) = 3T (e1) + 2T (e2)
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Matrix Transformations: Example (cont.)

Also

T

([
x1
x2

])
= T ( e1 + e2) =

T (e1) + T (e2) =
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Coordinate Vectors

Definition

For a finite-dimensional vector space V , an ordered basis for V is
a basis for V with a specific order. In other words, it is a finite
sequence of linearly independent vectors in V that generates V .

Definition

Let β = {u1, · · · , un} be an ordered basis for V , and for x ∈ V let
a1, · · · , an be the unique scalars such that

x =
n∑

i=1

aiui .

The coordinate vector of x relative to β is

[x ]β =

a1
...
an


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Coordinate Systems: Example

Example

Let β = {b1,b2} where b1 =

[
3
1

]
and b2 =

[
0
1

]
and let

E = {e1, e2} where e1 =

[
1
0

]
and e2 =

[
0
1

]
.

Solution:

If [x]β =

[
2
3

]
, then x =

[
3
1

]
+

[
0
1

]
=

[ ]
.

If [x]E =

[
6
5

]
, then x =

[
1
0

]
+

[
0
1

]
=

[ ]
.
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Coordinate Systems: Example (cont.)

Standard graph paper β− graph paper

Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, 2015 23 / 1



Matrix Representations

Definition

Suppose V , W are finite-dimensional vector spaces with ordered
bases β = {v1, · · · , vn}, γ = {w1, · · · ,wm}. For linear
T : V →W , there are unique scalars aij ∈ F such that

T (vj) =
m∑
i=1

aijwi for 1 ≤ j ≤ n.

The m × n matrix A defined by Aij = aij is the matrix
representation of T in the ordered bases β and γ, written
A = [T ]γβ. If V = W and β = γ, then A = [T ]β.

Note that the jth column of A is [T (vj)]γ , and if [U]γβ = [T ]γβ for
linear U : V →W , then U = T .
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Matrix of Linear Transformation: Example

Example  ? ?
? ?
? ?

[ x1
x2

]
=

 x1 − 2x2
4x1

3x1 + 2x2


Solution: ? ?

? ?
? ?

 = standard matrix of the linear transformation T

 ? ?
? ?
? ?

 =
[
T (e1) T (e2)

]
= (fill-in)
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Matrix of Linear Transformation: Example

Example

Find the standard matrix of the linear transformation T : R2 → R2

which rotates a point about the origin through an angle of π
4

radians (counterclockwise).

T (e1) =

  T (e2) =

 

↓

A =

 
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Identity Matrix

Identity Matrix

In is an n × n matrix with 1’s on the main left to right diagonal
and 0’s elsewhere. The ith column of In is labeled ei .

Example

I3 =
[
e1 e2 e3

]
=

 1 0 0
0 1 0
0 0 1


Note that

I3x =

 1 0 0
0 1 0
0 0 1

 x1
x2
x3


=

 +

 +

  = .
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Addition and Scalar Multiplication

Definition

Let T , U : V →W be arbitrary functions of vector spaces V , W
over F . Then T + U, aT : V →W are defined by
(T + U)(x) = T (x) + U(x) and (aT )(x) = aT (x), respectively,
for all x ∈ V and a ∈ F .

Theorem (2.7)

With the operations defined above, for vector spaces V , W over F
and linear T , U : V →W:

(a) aT + U is linear for all a ∈ F

(b) The collection of all linear transformations from V to W is a
vector space over F

Definition

For vector spaces V , W over F , the vector space of all linear
transformations from V into W is denoted by L(V ,W ), or just
L(V ) if V = W .
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Matrix Representations

Theorem (2.8)

For finite-dimensional vector spaces V , W with ordered bases β, γ,
and linear transformations T , U : V →W:

(a) [T + U]γβ = [T ]γβ + [U]γβ.

(b) [aT ]γβ = a[T ]γβ for all scalars a.
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