Math 4377/6308 Advanced Linear Algebra

 2.2 Properties of Linear Transformations, Matrices.Jiwen He
Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

2.2 Properties of Linear Transformations, Matrices.

- Null Spaces and Ranges
- Injective, Surjective, and Bijective
- Dimension Theorem
- Nullity and Rank
- Linear Map and Values on Basis
- Coordinate Vectors
- Matrix Representations

Linear Map and Null Space

Theorem (2.1-a)

Let $T: V \rightarrow W$ be a linear map. Then $\operatorname{null}(T)$ is a subspace of V.

Proof. We need to show that $0 \in \operatorname{null}(T)$ and that null (T) is closed under addition and scalar multiplication. By linearity, we have

$$
T(0)=T(0+0)=T(0)+T(0)
$$

so that $T(0)=0$. Hence $0 \in \operatorname{null}(T)$. For closure under addition, let $u, v \in \operatorname{null}(T)$. Then

$$
T(u+v)=T(u)+T(v)=0+0=0
$$

and hence $u+v \in \operatorname{null}(T)$. Similarly, for closure under scalar multiplication, let $u \in \operatorname{null}(T)$ and $a \in \mathbb{F}$. Then

$$
T(a u)=a T(u)=a 0=0
$$

and so $a u \in \operatorname{null}(T)$.

Injective, Surjective, and Bijective Linear Maps

Definition

The linear map $T: V \rightarrow W$ is called injective (one-to-one) if, for all $u, v \in V$, the condition $T u=T v$ implies that $u=v$. In other words, different vectors in V are mapped to different vectors in W.

Definition

The linear map $T: V \rightarrow W$ is called surjective (onto) if $\operatorname{range}(T)=W$.

Definition

A linear map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

Injective Linear Map

Theorem (2.4)

Let $T: V \rightarrow W$ be a linear map. Then T is injective if and only if $\operatorname{null}(T)=\{0\}$.

Proof.
(" \Longrightarrow ") Suppose that T is injective. Since null (T) is a subspace of V, we know that $0 \in$ $\operatorname{null}(T)$. Assume that there is another vector $v \in V$ that is in the kernel. Then $T(v)=0=$ $T(0)$. Since T is injective, this implies that $v=0$, proving that null $(T)=\{0\}$.
(" \Longleftarrow ") Assume that $\operatorname{null}(T)=\{0\}$, and let $u, v \in V$ be such that $T u=T v$. Then $0=T u-T v=T(u-v)$ so that $u-v \in \operatorname{null}(T)$. Hence $u-v=0$, or, equivalently, $u=v$. This shows that T is indeed injective.

Linear Maps and Ranges

Theorem (2.1-b)

Let $T: V \rightarrow W$ be a linear map. Then range (T) is a subspace of V.

Proof. We need to show that $0 \in \operatorname{range}(T)$ and that range (T) is closed under addition and scalar multiplication. We already showed that $T 0=0$ so that $0 \in \operatorname{range}(T)$.

For closure under addition, let $w_{1}, w_{2} \in$ range (T). Then there exist $v_{1}, v_{2} \in V$ such that $T v_{1}=w_{1}$ and $T v_{2}=w_{2}$. Hence

$$
T\left(v_{1}+v_{2}\right)=T v_{1}+T v_{2}=w_{1}+w_{2},
$$

and so $w_{1}+w_{2} \in \operatorname{range}(T)$.
For closure under scalar multiplication, let $w \in$ range (T) and $a \in \mathbb{F}$. Then there exists a $v \in V$ such that $T v=w$. Thus

$$
T(a v)=a T v=a w,
$$

and so $a w \in \operatorname{range}(T)$.

Dimension Theorem

Theorem (2.3, Dimension Theorem)

Let V be a finite-dimensional vector space and $T: V \rightarrow W$ be a linear map. Then range (T) is a finite-dimensional subspace of W and

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T))
$$

Proof. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$. Since null (T) is a subspace of V, we know that null (T) has a basis $\left(u_{1}, \ldots, u_{m}\right)$. This implies that $\operatorname{dim}($ null $(T))=$ m. By the Basis Extension Theorem, it follows that $\left(u_{1}, \ldots, u_{m}\right)$ can be extended to a basis of V, say $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$, so that $\operatorname{dim}(V)=m+n$.

The theorem will follow by showing that $\left(T v_{1}, \ldots, T v_{n}\right)$ is a basis of range (T) since this would imply that range (T) is finite-dimensional and $\operatorname{dim}($ range $(T))=n$, proving Equation (6.4).

Dimension Theorem (cont.)

Since $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ spans V, every $v \in V$ can be written as a linear combination of these vectors; i.e.,

$$
v=a_{1} u_{1}+\cdots+a_{m} u_{m}+b_{1} v_{1}+\cdots+b_{n} v_{n},
$$

where $a_{i}, b_{j} \in \mathbb{F}$. Applying T to v, we obtain

$$
T v=b_{1} T v_{1}+\cdots+b_{n} T v_{n}
$$

where the terms $T u_{i}$ disappeared since $u_{i} \in \operatorname{null}(T)$. This shows that $\left(T v_{1}, \ldots, T v_{n}\right)$ indeed spans range (T).

To show that $\left(T v_{1}, \ldots, T v_{n}\right)$ is a basis of range (T), it remains to show that this list is linearly independent. Assume that $c_{1}, \ldots, c_{n} \in \mathbb{F}$ are such that

$$
c_{1} T v_{1}+\cdots+c_{n} T v_{n}=0 .
$$

Dimension Theorem (cont.)

By linearity of T, this implies that

$$
T\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right)=0
$$

and so $c_{1} v_{1}+\cdots+c_{n} v_{n} \in \operatorname{null}(T)$. Since $\left(u_{1}, \ldots, u_{m}\right)$ is a basis of null (T), there must exist scalars $d_{1}, \ldots, d_{m} \in \mathbb{F}$ such that

$$
c_{1} v_{1}+\cdots+c_{n} v_{n}=d_{1} u_{1}+\cdots+d_{m} u_{m}
$$

However, by the linear independence of $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$, this implies that all coefficients $c_{1}=\cdots=c_{n}=d_{1}=\cdots=d_{m}=0$. Thus, $\left(T v_{1}, \ldots, T v_{n}\right)$ is linearly independent, and we are done.

Surjective Linear Map

Corollary

Let $T: V \rightarrow W$ be a linear map.
(1) If $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T is not injective.
(2) If $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T is not surjective.

Proof. By Theorem 6.5.1, we have that

$$
\begin{aligned}
\operatorname{dim}(\operatorname{null}(T)) & =\operatorname{dim}(V)-\operatorname{dim}(\operatorname{range}(T)) \\
& \geq \operatorname{dim}(V)-\operatorname{dim}(W)>0
\end{aligned}
$$

Since T is injective if and only if $\operatorname{dim}(\operatorname{null}(T))=0, T$ cannot be injective.
Similarly,

$$
\begin{aligned}
\operatorname{dim}(\operatorname{range}(T)) & =\operatorname{dim}(V)-\operatorname{dim}(\operatorname{null}(T)) \\
& \leq \operatorname{dim}(V)<\operatorname{dim}(W),
\end{aligned}
$$

and so range (T) cannot be equal to W. Hence, T cannot be surjective.

Nullity and Rank

Definition

For vector spaces V, W and linear $T: V \rightarrow W$, if $\operatorname{null}(T)$, i.e., $N(T)$, and range (T), i.e, $R(T)$, are finite-dimensional, the nullity and the rank of T are the dimensions of $\operatorname{null}(T)$ and $\operatorname{range}(T)$, respectively.

Theorem (Dimension Theorem, 2.3)

For vector spaces V, W and linear $T: V \rightarrow W$, if V is finite-dimensional then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)
$$

Rank of a Matrix

Rank

The rank of A is the dimension of the column space of A.

$$
\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=\# \text { of pivot columns of } A=\operatorname{dim} \operatorname{Row} A \text {. }
$$

The set of all linear combinations of the row vectors of a matrix A is called the row space of A and is denoted by Row A.

$$
\operatorname{Col} A^{T}=\operatorname{Row} A .
$$

Note the following:

- $\operatorname{dim} \operatorname{Col} A=\#$ of pivots of $A=\operatorname{dim}$ Row A.
- $\operatorname{dim} \operatorname{Nul} A=\#$ of free variables $=\#$ of nonpivot columns of A.

Rank Theorem

Theorem (Rank Theorem)

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation $\operatorname{rank} A+\operatorname{dim} N u l A=n$.

Rank Theorem: Example

Since Row $A=\operatorname{Col} A^{T}$, $\operatorname{rank} A=\operatorname{rank} A^{T}$.

Example

Suppose that a 5×8 matrix A has rank 5 . Find $\operatorname{dim} \operatorname{Nul} A, \operatorname{dim}$ Row A and rank A^{T}. Is Col $A=\mathbf{R}^{5}$?

Solution:

$$
\begin{gathered}
\underbrace{\operatorname{rank} A}_{\uparrow}+\underbrace{\operatorname{dim} \operatorname{Nul} A}_{\downarrow}=\underbrace{n}_{\downarrow} \\
5 \\
5+\operatorname{dim} \operatorname{Nul} A=8 \quad \Rightarrow \quad \operatorname{dim} \operatorname{Nul} A=\ldots-\ldots \\
\operatorname{dim} \operatorname{Row} A=\operatorname{rank} A=-\ldots- \\
\Rightarrow \quad \operatorname{rank} A^{T}=\operatorname{rank}
\end{gathered}
$$

Since rank $A=\#$ of pivots in $A=5$, there is a pivot in every row. WH So the columns of A span \mathbf{R}^{5}. Hence $\operatorname{Col} A=\mathbf{R}^{5}$.

Rank Theorem: Example

Example

For a 9×12 matrix A, find the smallest possible value of $\operatorname{dim} \mathrm{Nu}$ A.

Solution:

$$
\begin{aligned}
& \text { rank } A+\operatorname{dim} \operatorname{Nul} A=12 \\
& \operatorname{dim} \operatorname{Nul} A=12-\underbrace{\operatorname{rank} A}_{\text {largest possible value }=------}
\end{aligned}
$$

smallest possible value of $\operatorname{dim} \operatorname{Nul} A=\ldots-\quad$

Properties of Linear Transformations

Theorem (2.5)

For vector spaces V, W of equal (finite) dimension and linear $T: V \rightarrow W$, the following are equivalent:
(a) T is one-to-one.
(b) T is onto.
(c) $\operatorname{rank}(T)=\operatorname{dim}(V)$

Linear Map and Values on Basis

Theorem (2.6)

Let $\left(v_{1}, \cdots, v_{n}\right)$ be a basis of V and $\left(w_{1}, \cdots, w_{n}\right)$ be an arbitrary list of vectors in W. Then there exists a unique linear map $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}, \forall i=1,2, \cdots, n$.

Proof. First we verify that there is at most one linear map T with $T\left(v_{i}\right)=w_{i}$. Take any $v \in V$. Since $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V there are unique scalars $a_{1}, \ldots, a_{n} \in \mathbb{F}$ such that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. By linearity, we have

$$
\begin{equation*}
T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=a_{1} w_{1}+\cdots+a_{n} w_{n}, \tag{6.3}
\end{equation*}
$$

and hence $T(v)$ is completely determined. To show existence, use Equation (6.3) to define T. It remains to show that this T is linear and that $T\left(v_{i}\right)=w_{i}$. These two conditions are not hard to show and are left to the reader.

Corollary

Suppose $\left\{v_{1}, \cdots, v_{n}\right\}$ is a finite basis for V, then if $U, T: V \rightarrow W$ are linear and $U\left(v_{i}\right)=T\left(v_{i}\right)$ for $i=1, \cdots, n$, then $U=T$.

Matrix Transformations: Example

Example

Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{y}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is a linear transformation which maps \mathbf{e}_{1} into \mathbf{y}_{1} and \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Solution: First, note that

$$
T\left(\mathbf{e}_{1}\right)=\ldots-\ldots \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=
$$

Also

$$
\mathbf{- -}_{1}+\ldots \mathbf{e}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Matrix Transformations: Example (cont.)

Then

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=T\left(\ldots \mathbf{e}_{1}+\ldots \mathbf{e}_{2}\right)= \\
\ldots-\ldots\left(\mathbf{e}_{1}\right)+\ldots T\left(\mathbf{e}_{2}\right)=
\end{gathered}
$$

Matrix Transformations: Example (cont.)

Also

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(\ldots \ldots \mathbf{e}_{1}+\ldots \ldots \mathbf{e}_{2}\right)= \\
\ldots T\left(\mathbf{e}_{1}\right)+\ldots T\left(\mathbf{e}_{2}\right)=
\end{gathered}
$$

Coordinate Vectors

Definition

For a finite-dimensional vector space V, an ordered basis for V is a basis for V with a specific order. In other words, it is a finite sequence of linearly independent vectors in V that generates V.

Definition

Let $\beta=\left\{u_{1}, \cdots, u_{n}\right\}$ be an ordered basis for V, and for $x \in V$ let a_{1}, \cdots, a_{n} be the unique scalars such that

$$
x=\sum_{i=1}^{n} a_{i} u_{i}
$$

The coordinate vector of x relative to β is

$$
[x]_{\beta}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Coordinate Systems: Example

Example

Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ where $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and let
$E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ where $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Solution:
If $[\mathbf{x}]_{\beta}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, then $\mathbf{x}=---\left[\begin{array}{l}3 \\ 1\end{array}\right]+\ldots-{ }_{0}^{0}\left[\begin{array}{l}1\end{array}\right]=[$.

Coordinate Systems: Example (cont.)

Standard graph paper

β - graph paper

Matrix Representations

Definition

Suppose V, W are finite-dimensional vector spaces with ordered bases $\beta=\left\{v_{1}, \cdots, v_{n}\right\}, \gamma=\left\{w_{1}, \cdots, w_{m}\right\}$. For linear $T: V \rightarrow W$, there are unique scalars $a_{i j} \in F$ such that

$$
T\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i} \quad \text { for } 1 \leq j \leq n
$$

The $m \times n$ matrix A defined by $A_{i j}=a_{i j}$ is the matrix representation of T in the ordered bases β and γ, written
$A=[T]_{\beta}^{\gamma}$. If $V=W$ and $\beta=\gamma$, then $A=[T]_{\beta}$.

Note that the j th column of A is $\left[T\left(v_{j}\right)\right]_{\gamma}$, and if $[U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}$ for linear $U: V \rightarrow W$, then $U=T$.

Matrix of Linear Transformation: Example

Example

$$
\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
4 x_{1} \\
3 x_{1}+2 x_{2}
\end{array}\right]
$$

Solution:

$$
\begin{align*}
& {\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]=\text { standard matrix of the linear transformation } T} \\
& {\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right]=} \tag{fill-in}
\end{align*}
$$

Matrix of Linear Transformation: Example

Example

Find the standard matrix of the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

Identity Matrix

Identity Matrix

I_{n} is an $n \times n$ matrix with 1 's on the main left to right diagonal and 0 's elsewhere. The ith column of I_{n} is labeled \mathbf{e}_{i}.

Example

$$
I_{3}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note that

$$
I_{3} \mathbf{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Addition and Scalar Multiplication

Definition

Let $T, U: V \rightarrow W$ be arbitrary functions of vector spaces V, W over F. Then $T+U, a T: V \rightarrow W$ are defined by
$(T+U)(x)=T(x)+U(x)$ and $(a T)(x)=a T(x)$, respectively, for all $x \in V$ and $a \in F$.

Theorem (2.7)

With the operations defined above, for vector spaces V, W over F and linear $T, U: V \rightarrow W$:
(a) $a T+U$ is linear for all $a \in F$
(b) The collection of all linear transformations from V to W is a vector space over F

Definition

For vector spaces V, W over F, the vector space of all linear transformations from V into W is denoted by $\mathcal{L}(V, W)$, or just $\mathcal{L}(V)$ if $V=W$.

Matrix Representations

Theorem (2.8)

For finite-dimensional vector spaces V, W with ordered bases β, γ, and linear transformations $T, U: V \rightarrow W$:
(a) $[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma}$.
(b) $[a T]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}$ for all scalars a.

