Math 4377/6308 Advanced Linear Algebra

2.3 Composition of Linear Transformations

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

2.3 Composition of Linear Transformations

- Compositions of Maps
- Basic Properties of Compositions
- Multiplication of Matrices

Composition of Linear Transformations

Theorem (2.9)

Let V, W, Z be vector spaces over a field F, and $T: V \rightarrow W$, $U: W \rightarrow Z$ be linear. Then $U T: V \rightarrow Z$ is linear.

Theorem (2.10)

Let V be a vector space and $T, U_{1}, U_{2} \in \mathcal{L}(V)$. Then
(a) $T\left(U_{1}+U_{2}\right)=T U_{1}+T U_{2}$ and $\left(U_{1}+U_{2}\right) T=U_{1} T+U_{2} T$.
(b) $T\left(U_{1} U_{2}\right)=\left(T U_{1}\right) U_{2}$.
(c) $T I=I T=T$.
(d) $a\left(U_{1} U_{2}\right)=\left(a U_{1}\right) U_{2}=U_{1}\left(a U_{2}\right)$ for all scalars a.

Matrix Multiplication

Let $T: V \rightarrow W, U: W \rightarrow Z$ be linear, $\alpha=\left\{v_{1}, \cdots, v_{n}\right\}$, $\beta=\left\{w_{1}, \cdots, w_{m}\right\}, \gamma=\left\{z_{1}, \cdots, z_{p}\right\}$ ordered bases for V, W, Z, and $A=[U]_{\beta}^{\gamma}, B=[T]_{\alpha}^{\beta}$. Consider $[U T]_{\alpha}^{\gamma}$:

$$
\begin{gathered}
(U T)\left(v_{j}\right)=U\left(T\left(v_{j}\right)\right)=U\left(\sum_{k=1}^{m} B_{k j} w_{k}\right)=\sum_{k=1}^{m} B_{k j} U\left(w_{k}\right) \\
=\sum_{k=1}^{m} B_{k j}\left(\sum_{i=1}^{p} A_{i k} z_{i}\right)=\sum_{i=1}^{p}\left(\sum_{k=1}^{m} A_{i k} B_{k j}\right) z_{i}
\end{gathered}
$$

Matrix Multiplication (cont.)

Definition

Let A, B be $m \times n, n \times p$ matrices. The product $A B$ is the $m \times p$ matrix with

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}, \quad \text { for } 1 \leq i \leq m, \quad 1 \leq j \leq p
$$

Theorem (2.11)

Let V, W, Z be finite-dimensional vector spaces with ordered bases α, β, γ, and $T: V \rightarrow W, U: W \rightarrow Z$ be linear. Then

$$
[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}
$$

Matrix Multiplication (cont.)

Corollary
Let V be a finite-dimensional vector space with ordered basis β, and $T, U \in \mathcal{L}(V)$. Then $[U T]_{\beta}=[U]_{\beta}[T]_{\beta}$.

Definition

The Kronecker delta is defined by $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$. The $n \times n$ identity matrix I_{n} is defined by $\left(I_{n}\right)_{i j}=\delta_{i j}$.

Matrix Notation

Matrix Notation

Two ways to denote $m \times n$ matrix A :
(1) In terms of the columns of A :

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

(2) In terms of the entries of A :

$$
A=\left[\begin{array}{rlrlr}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]
$$

Main diagonal entries:

Matrix Addition: Theorem

Theorem (Addition)

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

$$
\begin{array}{ll}
\text { a. } A+B=B+A & \text { d. } r(A+B)=r A+r B \\
\text { b. }(A+B)+C=A+(B+C) & \text { e. }(r+s) A=r A+s A \\
\text { c. } A+0=A & \text { f. } r(s A)=(r s) A
\end{array}
$$

Zero Matrix

$$
0=\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right]
$$

Matrix Multiplication

Matrix Multiplication

Multiplying B and \mathbf{x} transforms \mathbf{x} into the vector $B \mathbf{x}$. In turn, if we multiply A and $B \mathbf{x}$, we transform $B \mathbf{x}$ into $A(B \mathbf{x})$. So $A(B \mathbf{x})$ is the composition of two mappings.

Define the product $A B$ so that $A(B \mathbf{x})=(A B) \mathbf{x}$.

Matrix Multiplication: Definition

Suppose A is $m \times n$ and B is $n \times p$ where

$$
B=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right] .
$$

Then

$$
\begin{gathered}
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \\
\text { and } \\
A(B \mathbf{x})=A\left(x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p}\right) \\
=A\left(x_{1} \mathbf{b}_{1}\right)+A\left(x_{2} \mathbf{b}_{2}\right)+\cdots+A\left(x_{p} \mathbf{b}_{p}\right)
\end{gathered}
$$

$$
=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p}=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]
$$

Matrix Multiplication: Definition (cont.)

Therefore,

$$
A(B \mathbf{x})=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right] \mathbf{x} .
$$

and by defining

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

we have $A(B \mathbf{x})=(A B) \mathbf{x}$.
Note that $A \mathbf{b}_{1}$ is a linear combination of the columns of $A, A \mathbf{b}_{2}$ is a linear combination of the columns of A, etc.

Each column of $A B$ is a linear combination of the columns of A using weights from the corresponding columns of B.

Matrix Multiplication: Example

Example

Compute $A B$ where $A=\left[\begin{array}{rr}4 & -2 \\ 3 & -5 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -3 \\ 6 & -7\end{array}\right]$.
Solution:

$$
\begin{array}{cc}
A \mathbf{b}_{1}=\left[\begin{array}{rr}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right], & A \mathbf{b}_{2}=\left[\begin{array}{rr}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-7
\end{array}\right] \\
=\left[\begin{array}{c}
-4 \\
-24 \\
6
\end{array}\right] & =\left[\begin{array}{c}
2 \\
26 \\
-7
\end{array}\right] \\
\Longrightarrow A B=\left[\begin{array}{rr}
-4 & 2 \\
-24 & 26 \\
6 & -7
\end{array}\right]
\end{array}
$$

Matrix Multiplication: Example

Example

If A is 4×3 and B is 3×2, then what are the sizes of $A B$ and $B A$?
Solution:

$$
\left.\begin{array}{c}
A B=\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right]=\left[\begin{array}{l}
\\
\\
B A
\end{array}\right] \\
\\
*
\end{array}\right]\left[\begin{array}{ll}
* & * \\
* \\
* & * \\
* \\
* & * \\
* & * \\
* & *
\end{array}\right]
$$

which is

$$
\text { If } A \text { is } m \times n \text { and } B \text { is } n \times p \text {, then } A B \text { is } m \times p \text {. }
$$

Row-Column Rule for Computing $A B$ (alternate method)

The definition $A B=\left[\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}\end{array}\right]$ is good for theoretical work. When A and B have small sizes, the following method is more efficient when working by hand.

Row-Column Rule for Computing $A B$

If $A B$ is defined, let $(A B)_{i j}$ denote the entry in the ith row and jth column of $A B$. Then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j},
$$

i.e.,
$\left[\begin{array}{llll} & & & \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ & & & \end{array}\right][$

Row-Column Rule for Computing $A B$: Example

Example
$A=\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]$. Compute $A B$, if it is defined.

Solution: Since A is 2×3 and B is 3×2, then $A B$ is defined and $A B$ is

$$
\begin{aligned}
& A B=\left[\begin{array}{rrr}
2 & 3 & 6 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -3 \\
0 & 1 \\
4 & -7
\end{array}\right]=\left[\begin{array}{ll}
28 & \square \\
\square & \square
\end{array}\right] \\
& {\left[\begin{array}{rrr}
2 & 3 & 6 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -3 \\
0 & 1 \\
4 & -7
\end{array}\right]=\left[\begin{array}{rr}
28 & -45 \\
\square & \square
\end{array}\right]}
\end{aligned}
$$

Row-Column Rule for Computing AB: Example (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 3 & 6 \\
-\mathbf{1} & \mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{rr}
\mathbf{2} & -3 \\
\mathbf{0} & 1 \\
\mathbf{4} & -7
\end{array}\right]=\left[\begin{array}{rr}
28 & -45 \\
\mathbf{2} & \boldsymbol{\square}
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
2 & 3 & 6 \\
-\mathbf{1} & \mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{rr}
2 & -\mathbf{3} \\
0 & \mathbf{1} \\
4 & -\mathbf{7}
\end{array}\right]=\left[\begin{array}{rr}
28 & -45 \\
2 & -\mathbf{4}
\end{array}\right]} \\
& \text { So } A B=\left[\begin{array}{cc}
28 & -45 \\
2 & -4
\end{array}\right] .
\end{aligned}
$$

Matrix Multiplication: Theorem

Theorem (Multiplication)

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.

$$
\begin{array}{lll}
\text { a. } & A(B C)=(A B) C & \text { (associative law of multiplication) } \\
\text { b. } & A(B+C)=A B+A C & \text { (left-distributive law) } \\
\text { c. } & (B+C) A=B A+C A & \text { (right-distributive law) } \\
\text { d. } & r(A B)=(r A) B=A(r B) & \\
& \text { for any scalar } r & \\
\text { e. } & I_{m} A=A=A I_{n} & \text { (identity for matrix multiplication) }
\end{array}
$$

Matrix Power

Powers of A

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Example

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]^{3}=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]} \\
& =[\quad]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
21 & 8
\end{array}\right]
\end{aligned}
$$

Properties of Matrix Multiplication

Theorem (2.12)
Let A be $m \times n$ matrix, B, C be $n \times p$ matrices, and D, E be $q \times m$ matrices. Then
(a) $A(B+C)=A B+A C$ and $(D+E) A=D A+E A$.
(b) $a(A B)=(a A) B=A(a B)$ for any scalar a.
(c) $I_{m} A=A=A I_{n}$.
(d) If V is an n-dimensional vector space with ordered basis β, then $\left[I_{V}\right]_{\beta}=I_{n}$.

Properties of Matrix Multiplication (cont.)

Corollary

Let A be $m \times n$ matrix, B_{1}, \cdots, B_{k} be $n \times p$ matrices, C_{1}, \cdots, C_{k} be $q \times m$ matrices, and a_{1}, \cdots, a_{k} be scalars. Then

$$
A\left(\sum_{i=1}^{k} a_{i} B_{i}\right)=\sum_{i=1}^{k} a_{i} A B_{i}
$$

and

$$
\left(\sum_{i=1}^{k} a_{i} C_{i}\right) A=\sum_{i=1}^{k} a_{i} C_{i} A
$$

Properties of Matrix Multiplication (cont.)

Theorem (2.13)

Let A be $m \times n$ matrix and B be $n \times p$ matrix, and u_{j}, v_{j} the j th columns of $A B, B$. Then
(a) $u_{j}=A v_{j}$.
(b) $v_{j}=B e_{j}$.

Theorem (2.14)

Let V, W be finite-dimensional vector spaces with ordered bases β, γ, and $T: V \rightarrow W$ be linear. Then for $u \in V$:

$$
[T(u)]_{\gamma}=[T]_{\beta}^{\gamma}[u]_{\beta}
$$

Left-multiplication Transformations

Definition

Let A be $m \times n$ matrix. The left-multiplication transformation L_{A} is the mapping $L_{A}: F^{n} \rightarrow F^{m}$ defined by $L_{A}(x)=A x$ for each column vector $x \in F^{n}$.

Left-multiplication Transformations (cont.)

Theorem (2.15)

Let A be $m \times n$ matrix, then $L_{A}: F^{n} \rightarrow F^{m}$ is linear, and if B is $m \times n$ matrix and β, γ are standard ordered bases for F^{n}, F^{m}, then:
(a) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.
(b) $L_{A}=L_{B}$ if and only if $A=B$.
(c) $L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{A}$ for all $a \in F$.
(d) For linear $T: F^{n} \rightarrow F^{m}$, there exists a unique $m \times n$ matrix C such that $T=L_{C}$, and $C=[T]_{\beta}^{\gamma}$.
(e) If E is an $n \times p$ matrix, then $L_{A E}=L_{A} L_{E}$.
(f) If $m=n$, then $L_{I_{n}}=I_{F^{n}}$.

Theorem (2.16)
Let A, B, C be matrices such that $A(B C)$ is defined. Then $(A B) C$ is also defined and $A(B C)=(A B) C$.

