Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

2.3 Composition of Linear Transformations

- Compositions of Maps
- Basic Properties of Compositions
- Multiplication of Matrices

Composition of Linear Transformations

Theorem (2.9)

Let V, W, Z be vector spaces over a field F, and T : $V \rightarrow W$, U : $W \rightarrow Z$ be linear. Then UT : $V \rightarrow Z$ is linear.

Theorem (2.10)

Let V be a vector space and T, U_1 , $U_2 \in \mathcal{L}(V)$. Then

(a)
$$T(U_1 + U_2) = TU_1 + TU_2$$
 and $(U_1 + U_2)T = U_1T + U_2T$.

(b)
$$T(U_1U_2) = (TU_1)U_2$$
.

$$(c) TI = IT = T.$$

(d) $a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$ for all scalars a.

Matrix Multiplication

Let $T: V \to W$, $U: W \to Z$ be linear, $\alpha = \{v_1, \dots, v_n\}$, $\beta = \{w_1, \dots, w_m\}$, $\gamma = \{z_1, \dots, z_p\}$ ordered bases for V, W, Z, and $A = [U]_{\beta}^{\gamma}$, $B = [T]_{\alpha}^{\beta}$. Consider $[UT]_{\alpha}^{\gamma}$:

$$(UT)(v_j) = U(T(v_j)) = U\left(\sum_{k=1}^{m} B_{kj} w_k\right) = \sum_{k=1}^{m} B_{kj} U(w_k)$$
$$= \sum_{k=1}^{m} B_{kj} \left(\sum_{i=1}^{p} A_{ik} z_i\right) = \sum_{i=1}^{p} \left(\sum_{k=1}^{m} A_{ik} B_{kj}\right) z_i$$

Jiwen He, University of Houston

Matrix Multiplication (cont.)

Definition

Let A, B be $m \times n$, $n \times p$ matrices. The product AB is the $m \times p$ matrix with

2.3 Composition

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}, \quad \text{for } 1 \leq i \leq m, \quad 1 \leq j \leq p.$$

Theorem (2.11)

Let V, W, Z be finite-dimensional vector spaces with ordered bases α , β , γ , and T : V \rightarrow W, U : W \rightarrow Z be linear. Then

$$[UT]^{\gamma}_{lpha} = [U]^{\gamma}_{eta} [T]^{eta}_{lpha}$$

Corollary

Let V be a finite-dimensional vector space with ordered basis β , and T, $U \in \mathcal{L}(V)$. Then $[UT]_{\beta} = [U]_{\beta}[T]_{\beta}$.

2.3 Composition

Definition

The Kronecker delta is defined by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. The $n \times n$ identity matrix I_n is defined by $(I_n)_{ij} = \delta_{ij}$.

Matrix Notation

Matrix Notation

Two ways to denote $m \times n$ matrix A:

In terms of the columns of A:

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

In terms of the *entries* of A:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

Main diagonal entries:____

Jiwen He, University of Houston

< 17 ▶

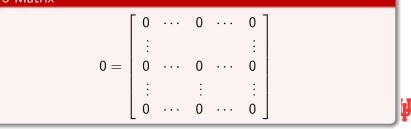
Theorem (Addition)

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

2.3 Composition

a.
$$A + B = B + A$$
d. $r(A + B) = rA + rB$ b. $(A + B) + C = A + (B + C)$ e. $(r + s)A = rA + sA$ c. $A + 0 = A$ f. $r(sA) = (rs)A$

Zero Matrix



Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebr

(人間) トイヨト イヨト

Matrix Multiplication

Matrix Multiplication

Multiplying *B* and **x** transforms **x** into the vector *B***x**. In turn, if we multiply *A* and *B***x**, we transform *B***x** into $A(B\mathbf{x})$. So $A(B\mathbf{x})$ is the composition of two mappings.

Define the product AB so that $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Jiwen He, University of Houston

Matrix Multiplication: Definition

Suppose A is $m \times n$ and B is $n \times p$ where

2.3 Composition

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

Then

_

$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p$$

and
$$A(B\mathbf{x}) = A(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p)$$

$$= A(x_1\mathbf{b}_1) + A(x_2\mathbf{b}_2) + \dots + A(x_p\mathbf{b}_p)$$

$$x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Jiwen He, University of Houston

Spring, 2015

.

Matrix Multiplication: Definition (cont.)

Therefore,

$$A(B\mathbf{x}) = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]\mathbf{x}.$$

and by defining

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

we have $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Note that $A\mathbf{b}_1$ is a linear combination of the columns of A, $A\mathbf{b}_2$ is a linear combination of the columns of A, *etc*.

Each column of AB is a linear combination of the columns of A using weights from the corresponding columns of B.

Jiwen He, University of Houston

oring, 2015 11 / 2

Matrix Multiplication: Example

Example

Compute AB where
$$A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix}$.

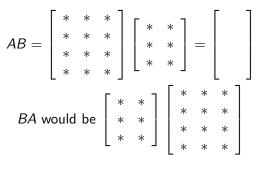
Solution:

Matrix Multiplication: Example

Example

If A is 4×3 and B is 3×2 , then what are the sizes of AB and BA?

Solution:



which is _____

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

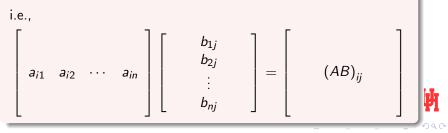
Row-Column Rule for Computing AB (alternate method)

The definition $AB = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$ is good for theoretical work. When *A* and *B* have small sizes, the following method is more efficient when working by hand.

Row-Column Rule for Computing AB

If AB is defined, let $(AB)_{ij}$ denote the entry in the ith row and jth column of AB. Then

$$(AB)_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj},$$



Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

2.3 Composition Composition Addition Multiplication Row-Column Rule for Computing AB: Example

Example

$$A = \begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix}.$$
 Compute *AB*, if it is defined.

Solution: Since A is 2×3 and B is 3×2 , then AB is defined and AB is _____×___.

$$AB = \begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ \mathbf{0} & 1 \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} \mathbf{28} & \bullet \\ \bullet & \bullet \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ \mathbf{0} & \mathbf{1} \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} \mathbf{28} & -45 \\ \bullet & \bullet \end{bmatrix}$$

2.3 Composition

$$\begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & \blacksquare \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 6 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} 2 & -\mathbf{3} \\ 0 & \mathbf{1} \\ 4 & -\mathbf{7} \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & -\mathbf{4} \end{bmatrix}$$

So
$$AB = \begin{bmatrix} 28 & -45 \\ 2 & -4 \end{bmatrix}$$
.

呥

< A > < 3

Matrix Multiplication: Theorem

Theorem (Multiplication)

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.

- a. A(BC) = (AB)C (associative law of multiplication)
- b. A(B + C) = AB + AC (left distributive law)
- c. (B + C)A = BA + CA (right-distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

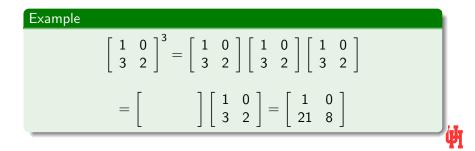
for any scalar r

e. $I_m A = A = A I_n$ (identity for matrix multiplication)

Matrix Power

Powers of A

$$A^k = \underbrace{A \cdots A}_k$$



Jiwen He, University of Houston

- 4 同 6 4 日 6 4 日 6

Properties of Matrix Multiplication

Theorem (2.12)

Let A be $m \times n$ matrix, B, C be $n \times p$ matrices, and D, E be $q \times m$ matrices. Then

(a)
$$A(B+C) = AB + AC$$
 and $(D+E)A = DA + EA$.

(b)
$$a(AB) = (aA)B = A(aB)$$
 for any scalar a.

(c)
$$I_m A = A = A I_n$$
.

(d) If V is an n-dimensional vector space with ordered basis β , then $[I_V]_{\beta} = I_n$.

Properties of Matrix Multiplication (cont.)

2.3 Composition

Corollary

Let A be $m \times n$ matrix, B_1, \dots, B_k be $n \times p$ matrices, C_1, \dots, C_k be $q \times m$ matrices, and a_1, \dots, a_k be scalars. Then

$$A\left(\sum_{i=1}^k a_i B_i\right) = \sum_{i=1}^k a_i A B_i$$

and

$$\left(\sum_{i=1}^k a_i C_i\right) A = \sum_{i=1}^k a_i C_i A$$

Properties of Matrix Multiplication (cont.)

2.3 Composition

Theorem (2.13)

Let A be $m \times n$ matrix and B be $n \times p$ matrix, and u_j , v_j the jth columns of AB, B. Then

(a)
$$u_j = Av_j$$
.
(b) $v_j = Be_j$.

Theorem (2.14)

Let V, W be finite-dimensional vector spaces with ordered bases β , γ , and $T : V \rightarrow W$ be linear. Then for $u \in V$:

$$[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$$

Jiwen He, University of Houston

Left-multiplication Transformations

Definition

Let A be $m \times n$ matrix. The left-multiplication transformation L_A is the mapping $L_A : F^n \to F^m$ defined by $L_A(x) = Ax$ for each column vector $x \in F^n$.

Theorem (2.15)

Let A be $m \times n$ matrix, then $L_A : F^n \to F^m$ is linear, and if B is $m \times n$ matrix and β , γ are standard ordered bases for F^n , F^m , then:

Theorem (2.16)

Let A, B, C be matrices such that A(BC) is defined. Then (AB)C is also defined and A(BC) = (AB)C.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebr

pring, 2015 24