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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

2.4 Invertibility and Isomorphisms

Isomorphisms and Inverses

Every finite dimensional vector space is isomorphic to
coordinate space.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Inverse of Linear Transformation

Definition

Let V , W be vector spaces and T : V →W be linear. A function
U : W → V is an inverse of T if TU = IW and UT = IV . If T has
an inverse, it is invertible and the inverse T−1 is unique.

For invertible T , U:

1 (TU)−1 = U−1T−1.

2 (T−1)−1 = T (so T−1 is invertible)

3 If V , W have equal dimensions, linear T : V →W is
invertible if and only if rank(T ) = dim(V ).

Theorem (2.17)

For vector spaces V , W and linear and invertible T : V →W ,
T−1 : W → V is linear.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverse of a Matrix: Definition

The inverse of a real number a is denoted by a−1. For example,
7−1 = 1/7 and

7 · 7−1 = 7−1 · 7 = 1.

The Inverse of a Matrix

An n × n matrix A is said to be invertible if there is an n × n
matrix C satisfying

CA = AC = In

where In is the n× n identity matrix. We call C the inverse of A .
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverse of a Matrix: Facts

Fact

If A is invertible, then the inverse is unique.

Proof: Assume B and C are both inverses of A. Then

B = BI = B ( ) = ( ) = I = C .

So the inverse is unique since any two inverses coincide.�

Notation

The inverse of A is usually denoted by A−1.

We have

AA−1 = A−1A = In

Not all n × n matrices are invertible. A matrix which is not
invertible is sometimes called a singular matrix. An invertible
matrix is called nonsingular matrix.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverse of a 2-by-2 Matrix

Theorem

Let A =

[
a b
c d

]
. If ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b
−c a

]
.

If ad − bc = 0, then A is not invertible.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverse of a Matrix: Solution of Linear System

Theorem

If A is an invertible n × n matrix, then for each b in Rn, the
equation Ax = b has the unique solution x = A−1b.

Proof: Assume A is any invertible matrix and we wish to solve
Ax = b. Then

Ax = b and so
Ix = or x = .

Suppose w is also a solution to Ax = b. Then Aw = b and

Aw = b which means w =A−1b.

So, w =A−1b, which is in fact the same solution.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Solution of Linear System

Example

Use the inverse of A =

[
−7 3
5 −2

]
to solve

−7x1 + 3x2 = 2
5x1 − 2x2 = 1

.

Solution: Matrix form of the linear system:[
−7 3

5 −2

] [
x1

x2

]
=

[
2
1

]

A−1 = 1
14−15

[
−2 −3
−5 −7

]
=

[
2 3
5 7

]
.

x =A−1b =

[
2 3
5 7

] [ ]
=

[ ]
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverse of a Matrix: Theorem

Theorem

Suppose A and B are invertible. Then the following results hold:

a. A−1 is invertible and
(
A−1

)−1
= A

(i.e. A is the inverse of A−1).

b. AB is invertible and (AB)−1 = B−1A−1

c. AT is invertible and
(
AT
)−1

=
(
A−1

)T
Partial proof of part b:

(AB)
(
B−1A−1

)
= A ( )A−1

= A ( )A−1 = = .

Similarly, one can show that
(
B−1A−1

)
(AB) = I .

Part b of Theorem can be generalized to three or more invertible
matrices: (ABC )−1 =
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverse of Elementary Matrix

Earlier, we saw a formula for finding the inverse of a 2× 2 invertible
matrix. How do we find the inverse of an invertible n × n matrix?
To answer this question, we first look at elementary matrices.

Elementary Matrices

An elementary matrix is one that is obtained by performing a
single elementary row operation on an identity matrix.

Example

Let E1 =

 1 0 0
0 2 0
0 0 1

, E2 =

 1 0 0
0 0 1
0 1 0

 ,
E3 =

 1 0 0
0 1 0
3 0 1

 and A =

 a b c
d e f
g h i

.

E1, E2, and E3 are elementary matrices. Why?
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Multiplication by Elementary Matrices

Observe the following products and describe how these products
can be obtained by elementary row operations on A.

E1A =

 1 0 0
0 2 0
0 0 1

 a b c
d e f
g h i

 =

 a b c
2d 2e 2f
g h i


E2A =

 1 0 0
0 0 1
0 1 0

 a b c
d e f
g h i

 =

 a b c
g h i
d e f


E3A =

 1 0 0
0 1 0
3 0 1

 a b c
d e f
g h i

 =

 a b c
d e f

3a + g 3b + h 3c + i


If an elementary row operation is performed on an m× n matrix A,
the resulting matrix can be written as EA, where the m ×m
matrix E is created by performing the same row operations on Im.

Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, 2015 11 / 27



2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverses of Elementary Matrices: Example

Elementary matrices are invertible because row operations are
reversible. To determine the inverse of an elementary matrix E ,
determine the elementary row operation needed to transform E
back into I and apply this operation to I to find the inverse.

Example

E3 =

 1 0 0
0 1 0
3 0 1

 E−1
3 =

 

Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, 2015 12 / 27



2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverses of Elementary Matrices: Example

Example

Let A =

 1 0 0
−3

2 0 1
2

0 1 0

 . Then

E1A =

 1 0 0
0 2 0
0 0 1

 1 0 0
−3

2 0 1
2

0 1 0

 =

 1 0 0
−3 0 1
0 1 0



E2 (E1A) =

 1 0 0
0 0 1
0 1 0

 1 0 0
−3 0 1
0 1 0

 =

 1 0 0
0 1 0
−3 0 1



E3 (E2E1A) =

 1 0 0
0 1 0
3 0 1

 1 0 0
0 1 0
−3 0 1

 =

 1 0 0
0 1 0
0 0 1
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverses of Elementary Matrices: Example (cont.)

Example (cont.)

So

E3E2E1A = I3 .

Then multiplying on the right by A−1, we get

E3E2E1A = I3 .

So

E3E2E1I3 = A−1
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverses of Elementary Matrices: Theorem

The elementary row operations that row reduce A to In are the
same elementary row operations that transform In into A−1.

Theorem

An n × n matrix A is invertible if and only if A is row equivalent to
In, and in this case, any sequence of elementary row operations
that reduces A to In will also transform In to A−1.

Algorithm for Finding A−1

Place A and I side-by-side to form an augmented matrix [A I ].
Then perform row operations on this matrix (which will produce
identical operations on A and I ). So by Theorem:

[A I ] will row reduce to
[
I A−1

]
or A is not invertible.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverses of Matrix: Example

Example

Find the inverse of A =

 2 0 0
−3 0 1
0 1 0

, if it exists.

Solution:

[A I ] =

 2 0 0 1 0 0
−3 0 1 0 1 0
0 1 0 0 0 1

 ∼ · · · ∼
 1 0 0 1

2 0 0
0 1 0 0 0 1
0 0 1 3

2 1 0



So A−1 =

 1
2 0 0
0 0 1
3
2 1 0
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Inverses of Matrix: Order

Order of multiplication is important!

Example

Suppose A,B,C , and D are invertible n × n matrices and
A = B(D − In)C .
Solve for D in terms of A,B,C and D.

Solution:

A = B(D − In)C

D − In = B−1AC−1

D − In + = B−1AC−1 +

D =
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Inverses

Lemma

For invertible and linear T : V →W , V is finite-dimensional if and
only if W is finite-dimensional. Then dim(V ) = dim(W ).

Theorem (2.18)

Let V , W be finite-dimensional vector spaces with ordered bases
β, γ, and T : V →W be linear. Then T is invertible if and only if
[T ]γβ is invertible, and [T−1]βγ = ([T ]γβ)−1.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Inverses (cont.)

Corollary 1

For finite-dimensional vector space V with ordered basis β and
linear T : V → V , T is invertible if and only if [T ]β is invertible,
and [T−1]β = ([Tβ])−1.

Corollary 2

An n × n matrix A is invertible if and only if LA is invertible, and
(LA)−1 = LA−1 .
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Isomorphisms

Definition

Let V , W be vector spaces. V is isomorphic to W if there exists
a linear transformation T : V →W that is invertible. Such a T is
an isomorphism from V onto W .

Isomorphic

Informally, we say that vector space V is isomorphic to W if every
vector space calculation in V is accurately reproduced in W , and
vice versa.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Isomorphisms

Theorem (2.19)

For finite-dimensional vector spaces V and W , V is isomorphic to
W if and only if dim(V ) = dim(W ).

Corollary

A vector space V over F is isomorphic to F n if and only if
dim(V ) = n.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

Isomorphisms

Theorem (2.20)

Let V , W be finite-dimensional vector spaces over F of dimensions
n, m with ordered bases β, γ. Then the function
Φ : L(V ,W )→ Mm×n(F ), defined by Φ(T ) = [T ]γβ for
T ∈ L(V ,W ), is an isomorphism.

Corollary

For finite-dimensional vector spaces V , W of dimensions n, m,
L(V ,W ) is finite-dimensional of dimension mn.
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2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphisms

The Standard Representation

Definition

Let β be an ordered basis for an n-dimensional vector space V over
the field F . The standard representation of V with respect to β is
the function φβ : V → F n defined by φβ(x) = [x ]β for each x ∈ V .

Theorem (2.21)

For any finite-dimensional vector space V with ordered basis β, φβ
is an isomorphism.

A set {u1,u2, . . . ,up} in V is linearly independent if and only if{
[u1]β , [u2]β , . . . , [up]β

}
is linearly independent in Fn.
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The Standard Representation: Example

Example

Use coordinate vectors to determine if {p1,p2,p3} is a linearly
independent set: p1 = 1− t, p2 = 2− t + t2, p3 = 2t + 3t2.

Solution: The standard basis set for P2 is β =
{

1, t, t2
}

. So

[p1]β =

  , [p2]β =

  , [p3]β =

 
Then  1 2 0

−1 −1 2
0 1 3

 ∼ · · · ∼

 1 2 0
0 1 2
0 0 1


By the IMT,

{
[p1]β , [p2]β , [p3]β

}
is linearly and

therefore {p1,p2,p3} is linearly .
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The Standard Representation: Example

Coordinate vectors allow us to associate vector spaces with
subspaces of other vectors spaces.

Example

Let β = {b1,b2} where b1 =

 3
3
1

 and b2 =

 0
1
3

.

Let H =span{b1,b2}. Find [x]β, if x =

 9
13
15

.

Solution: (a) Find c1 and c2 such that

c1

 3
3
1

+ c2

 0
1
3

 =

 9
13
15
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The Standard Representation: Example (cont.)

Corresponding augmented matrix:

 3 0 9
3 1 13
1 3 15

 v
 1 0 3

0 1 4
0 0 0



Therefore c1 = and c2 = and so [x]β =

[ ]
.
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The Standard Representation: Example (cont.)

 9
13
15

 in R3 is associated with the vector

[
3
4

]
in R2

H is isomorphic to R2
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