Math 4377/6308 Advanced Linear Algebra 2.4 Invertibility and Isomorphisms

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

2.4 Invertibility and Isomorphisms

- Isomorphisms and Inverses
- Every finite dimensional vector space is isomorphic to coordinate space.

Inverse of Linear Transformation

Definition

Let V, W be vector spaces and $T: V \to W$ be linear. A function $U: W \to V$ is an inverse of T if $TU = I_W$ and $UT = I_V$. If T has an inverse, it is **invertible** and the inverse T^{-1} is unique.

For invertible T, U:

(
$$TU$$
)⁻¹ = $U^{-1}T^{-1}$.

2
$$(T^{-1})^{-1} = T$$
 (so T^{-1} is invertible)

③ If V, W have equal dimensions, linear T : V → W is invertible if and only if rank(T) = dim(V).

Theorem (2.17)

For vector spaces V, W and linear and invertible $T : V \to W$, $T^{-1} : W \to V$ is linear.

< ロト < 同ト < ヨト < ヨト

The inverse of a real number *a* is denoted by a^{-1} . For example, $7^{-1} = 1/7$ and

2.4 Inverse

$$7 \cdot 7^{-1} = 7^{-1} \cdot 7 = 1.$$

The Inverse of a Matrix

An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C satisfying

$$CA = AC = I_n$$

where I_n is the $n \times n$ identity matrix. We call C the **inverse** of A.

Jiwen He, University of Houston

Spring, 2015 4

The Inverse of a Matrix: Facts

Fact

If A is invertible, then the inverse is unique.

Proof: Assume *B* and *C* are both inverses of *A*. Then

$$B = BI = B(\dots) = (\dots) = (\dots = I \dots = C.$$

So the inverse is unique since any two inverses coincide. ${\scriptstyle \blacksquare}$

Notation

The inverse of A is usually denoted by A^{-1} .

We have

$$AA^{-1} = A^{-1}A = I_n$$

Not all $n \times n$ matrices are invertible. A matrix which is not invertible is sometimes called a **singular** matrix. An invertible matrix is called **nonsingular** matrix.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Spring, 2015 5 /

The Inverse of a 2-by-2 Matrix

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is not invertible.

Theorem

If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof: Assume A is any invertible matrix and we wish to solve $A\mathbf{x} = \mathbf{b}$. Then

Suppose **w** is also a solution to $A\mathbf{x} = \mathbf{b}$. Then $A\mathbf{w} = \mathbf{b}$ and

 $____A\mathbf{w} = ____\mathbf{b}$ which means $\mathbf{w} = A^{-1}\mathbf{b}$.

So, $\mathbf{w} = A^{-1}\mathbf{b}$, which is in fact the same solution.

Solution of Linear System

Example

2.4 Inverse

Solution: Matrix form of the linear system:

$$\begin{bmatrix} -7 & 3\\ 5 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$
$$A^{-1} = \frac{1}{14-15} \begin{bmatrix} -2 & -3\\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}.$$
$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

The Inverse of a Matrix: Theorem

Theorem

Suppose A and B are invertible. Then the following results hold:

2.4 Inverse

a.
$$A^{-1}$$
 is invertible and $(A^{-1})^{-1} = A$
(i.e. A is the inverse of A^{-1}).

b. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

c.
$$A^{\mathcal{T}}$$
 is invertible and $\left(A^{\mathcal{T}}
ight)^{-1}=\left(A^{-1}
ight)^{\mathcal{T}}$

Partial proof of part b:

$$(AB) (B^{-1}A^{-1}) = A (-----) A^{-1}$$

= A (------) A^{-1} = ------ = ------

Similarly, one can show that $(B^{-1}A^{-1})(AB) = I$.

Part b of Theorem can be generalized to three or more invertible matrices: $(ABC)^{-1} =$ _____

The Inverse of Elementary Matrix

Earlier, we saw a formula for finding the inverse of a 2×2 invertible matrix. How do we find the inverse of an invertible $n \times n$ matrix? To answer this question, we first look at **elementary** matrices.

Elementary Matrices

An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

Example

Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$,
 $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.
 E_1 , E_2 , and E_3 are elementary matrices. Why?

Jiwen He, University of Houston

0 / 27

Multiplication by Elementary Matrices

Observe the following products and describe how these products can be obtained by elementary row operations on A.

2.4 Inverse

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{bmatrix}$$
$$E_{2}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$
$$E_{3}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 3a + g & 3b + h & 3c + i \end{bmatrix}$$

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_m .

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

pring, 2015 11

Elementary matrices are *invertible* because row operations are *reversible*. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

Jiwen He, University of Houston

The Inverses of Elementary Matrices: Example

2.4 Inverse

Example

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$
. Then
 $E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
 $E_2 (E_1 A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$
 $E_3 (E_2 E_1 A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebr

中

2.4 Inverse Inverse Definition Solution Elementary Matrix Isomorphis The Inverses of Elementary Matrices: Example (cont.)

Jiwen He, University of Houston

Spring, 2015 14 / 2

2.4 Inverse

The Inverses of Elementary Matrices: Theorem

The elementary row operations that row reduce A to I_n are the same elementary row operations that transform I_n into A^{-1} .

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1} .

Algorithm for Finding A^{-1}

Place A and I side-by-side to form an augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$. Then perform row operations on this matrix (which will produce identical operations on A and I). So by Theorem:

$$\begin{bmatrix} A & I \end{bmatrix}$$
 will row reduce to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$

or A is not invertible.

The Inverses of Matrix: Example

Example

Find the inverse of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, if it exists.

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$

The Inverses of Matrix: Order

Order of multiplication is important!

Example

Suppose A,B,C, and D are invertible $n \times n$ matrices and $A = B(D - I_n)C$. Solve for D in terms of A, B, C and D.

Solution:

Inverses

Lemma

For invertible and linear $T: V \to W$, V is finite-dimensional if and only if W is finite-dimensional. Then $\dim(V) = \dim(W)$.

Theorem (2.18)

Let V, W be finite-dimensional vector spaces with ordered bases β , γ , and $T : V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible, and $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.

Inverses (cont.)

Corollary 1

For finite-dimensional vector space V with ordered basis β and linear $T: V \to V$, T is invertible if and only if $[T]_{\beta}$ is invertible, and $[T^{-1}]_{\beta} = ([T_{\beta}])^{-1}$.

Corollary 2

An $n \times n$ matrix A is invertible if and only if L_A is invertible, and $(L_A)^{-1} = L_{A^{-1}}$.

pring, 2015 19 /

Isomorphisms

Definition

Let V, W be vector spaces. V is **isomorphic** to W if there exists a linear transformation $T: V \to W$ that is invertible. Such a T is an isomorphism from V onto W.

Isomorphic

Informally, we say that vector space V is **isomorphic** to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Isomorphisms

Theorem (2.19)

For finite-dimensional vector spaces V and W, V is isomorphic to W if and only if $\dim(V) = \dim(W)$.

Corollary

A vector space V over F is isomorphic to F^n if and only if $\dim(V) = n$.

Isomorphisms

Theorem (2.20)

Let V, W be finite-dimensional vector spaces over F of dimensions n, m with ordered bases β , γ . Then the function $\Phi : \mathcal{L}(V, W) \to M_{m \times n}(F)$, defined by $\Phi(T) = [T]^{\gamma}_{\beta}$ for $T \in \mathcal{L}(V, W)$, is an isomorphism.

Corollary

For finite-dimensional vector spaces V, W of dimensions n, m, $\mathcal{L}(V, W)$ is finite-dimensional of dimension mn.

(本間) (本語) (本語)

The Standard Representation

Definition

Let β be an ordered basis for an *n*-dimensional vector space V over the field F. The standard representation of V with respect to β is the function $\phi_{\beta}: V \to F^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}$ for each $x \in V$.

Theorem (2.21)

For any finite-dimensional vector space V with ordered basis β , ϕ_{β} is an isomorphism.

A set
$$\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$$
 in V is linearly independent if and only if $\{[\mathbf{u}_1]_\beta, [\mathbf{u}_2]_\beta, \dots, [\mathbf{u}_p]_\beta\}$ is linearly independent in \mathbf{F}^n .

The Standard Representation: Example

Example

Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set: $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, $\mathbf{p}_3 = 2t + 3t^2$.

Solution: The standard basis set for P_2 is $\beta = \{1, t, t^2\}$. So

$$\left[\mathbf{p}_{1}\right]_{\beta} = \left[\begin{array}{c} \\ \end{array} \right], \left[\mathbf{p}_{2}\right]_{\beta} = \left[\begin{array}{c} \\ \end{array} \right], \left[\mathbf{p}_{3}\right]_{\beta} = \left[\begin{array}{c} \\ \end{array} \right]$$

Then

$$\left[\begin{array}{rrrr}1&2&0\\-1&-1&2\\0&1&3\end{array}\right]\sim\cdots\sim\left[\begin{array}{rrrr}1&2&0\\0&1&2\\0&0&1\end{array}\right]$$

By the IMT, $\{[\mathbf{p}_1]_{\beta}, [\mathbf{p}_2]_{\beta}, [\mathbf{p}_3]_{\beta}\}$ is linearly _____ and therefore $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is linearly _____.

2.4 Inverse

Definition Solution Elementary Matrix Isomorphism

The Standard Representation: Example

Coordinate vectors allow us to associate vector spaces with subspaces of other vectors spaces.

Example

Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3\\3\\1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0\\1\\3 \end{bmatrix}$.
Let $H = \operatorname{span}\{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\beta}$, if $\mathbf{x} = \begin{bmatrix} 9\\13\\15 \end{bmatrix}$.

Solution: (a) Find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3\\3\\1 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\3 \end{bmatrix} = \begin{bmatrix} 9\\13\\15 \end{bmatrix}$$

Jiwen He, University of Houston

pring, 2015 25

Corresponding augmented matrix:

$$\begin{bmatrix} 3 & 0 & 9 \\ 3 & 1 & 13 \\ 1 & 3 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore
$$c_1 = ___$$
 and $c_2 = ___$ and so $[\mathbf{x}]_{eta} = iggl[]$.

Jiwen He, University of Houston

2.4 Inverse

se Definition Solution Elementary Matrix Isomorphisms

The Standard Representation: Example (cont.)

