Math 4377/6308 Advanced Linear Algebra

 2.4 Invertibility and Isomorphisms
Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

2.4 Invertibility and Isomorphisms

- Isomorphisms and Inverses
- Every finite dimensional vector space is isomorphic to coordinate space.

Definition

Let V, W be vector spaces and $T: V \rightarrow W$ be linear. A function $U: W \rightarrow V$ is an inverse of T if $T U=I_{W}$ and $U T=I_{V}$. If T has an inverse, it is invertible and the inverse T^{-1} is unique.

For invertible T, U :
(1) $(T U)^{-1}=U^{-1} T^{-1}$.
(2) $\left(T^{-1}\right)^{-1}=T$ (so T^{-1} is invertible)
(3) If V, W have equal dimensions, linear $T: V \rightarrow W$ is invertible if and only if $\operatorname{rank}(T)=\operatorname{dim}(V)$.

Theorem (2.17)

For vector spaces V, W and linear and invertible $T: V \rightarrow W$, $T^{-1}: W \rightarrow V$ is linear.

The inverse of a real number a is denoted by a^{-1}. For example, $7^{-1}=1 / 7$ and

$$
7 \cdot 7^{-1}=7^{-1} \cdot 7=1
$$

The Inverse of a Matrix

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C satisfying

$$
C A=A C=I_{n}
$$

where I_{n} is the $n \times n$ identity matrix. We call C the inverse of A.

Fact

If A is invertible, then the inverse is unique.
Proof: Assume B and C are both inverses of A. Then

$$
B=B I=B(\ldots)=(\ldots-\ldots-\ldots-\ldots=-\ldots
$$

So the inverse is unique since any two inverses coincide.

Notation

The inverse of A is usually denoted by A^{-1}.

We have

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Not all $n \times n$ matrices are invertible. A matrix which is not invertible is sometimes called a singular matrix. An invertible matrix is called nonsingular matrix.

The Inverse of a 2-by-2 Matrix

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is not invertible.

The Inverse of a Matrix: Solution of Linear System

Theorem

If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbf{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof: Assume A is any invertible matrix and we wish to solve $A \mathbf{x}=\mathbf{b}$. Then

Suppose \mathbf{w} is also a solution to $A \mathbf{x}=\mathbf{b}$. Then $A \mathbf{w}=\mathbf{b}$ and

$$
A \mathbf{w}=\ldots \mathbf{b} \quad \text { which means } \quad \mathbf{w}=A^{-1} \mathbf{b} .
$$

So, $\mathbf{w}=A^{-1} \mathbf{b}$, which is in fact the same solution.

Solution of Linear System

Example

Use the inverse of $A=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]$ to solve

$$
\begin{gathered}
-7 x_{1}+3 x_{2}=2 \\
5 x_{1}-2 x_{2}=1
\end{gathered}
$$

Solution: Matrix form of the linear system:

$$
\begin{gathered}
{\left[\begin{array}{rr}
-7 & 3 \\
5 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
A^{-1}=\frac{1}{14-15}\left[\begin{array}{ll}
-2 & -3 \\
-5 & -7
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right] . \\
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right][]=[\quad]
\end{gathered}
$$

Theorem

Suppose A and B are invertible. Then the following results hold:
a. A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$
(i.e. A is the inverse of A^{-1}).
b. $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
c. A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Partial proof of part b:

$$
\begin{aligned}
& (A B)\left(B^{-1} A^{-1}\right)=A(\\
= & A(
\end{aligned}
$$

Similarly, one can show that $\left(B^{-1} A^{-1}\right)(A B)=I$.
Part b of Theorem can be generalized to three or more invertible matrices:

$$
(A B C)^{-1}=
$$

The Inverse of Elementary Matrix

Earlier, we saw a formula for finding the inverse of a 2×2 invertible matrix. How do we find the inverse of an invertible $n \times n$ matrix? To answer this question, we first look at elementary matrices.

Elementary Matrices

An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

Example
Let $E_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$,
$E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{llc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$.
E_{1}, E_{2}, and E_{3} are elementary matrices. Why?

Multiplication by Elementary Matrices

Observe the following products and describe how these products can be obtained by elementary row operations on A.
$E_{1} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{ccc}a & b & c \\ 2 d & 2 e & 2 f \\ g & h & i\end{array}\right]$
$E_{2} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ g & h & i \\ d & e & f\end{array}\right]$
$E_{3} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ 3 a+g & 3 b+h & 3 c+i\end{array}\right]$
If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_{m}.

The Inverses of Elementary Matrices: Example

Elementary matrices are invertible because row operations are reversible. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

Example

$$
E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \quad E_{3}^{-1}=[\square
$$

The Inverses of Elementary Matrices: Example

Example

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0
\end{array}\right] \text {. Then } \\
& E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& E_{2}\left(E_{1} A\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \\
& E_{3}\left(E_{2} E_{1} A\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example (cont.)

So

$$
E_{3} E_{2} E_{1} A=I_{3} .
$$

Then multiplying on the right by A^{-1}, we get

$$
E_{3} E_{2} E_{1} A_{-----}=I_{3}
$$

So

$$
E_{3} E_{2} E_{1} I_{3}=A^{-1}
$$

The Inverses of Elementary Matrices: Theorem

The elementary row operations that row reduce A to \mathbf{I}_{n} are the same elementary row operations that transform \mathbf{I}_{n} into \mathbf{A}^{-1}.

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} will also transform I_{n} to A^{-1}.

Algorithm for Finding \mathbf{A}^{-1}

Place A and I side-by-side to form an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. Then perform row operations on this matrix (which will produce identical operations on A and I). So by Theorem:

$$
\left[\begin{array}{ll}
A & I
\end{array}\right] \text { will row reduce to }\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$ or A is not invertible.

The Inverses of Matrix: Example

Example

Find the inverse of $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, if it exists.
Solution:
$\left[\begin{array}{ll}A & I\end{array}\right]=\left[\begin{array}{cccccc}2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1\end{array}\right] \sim \cdots \sim\left[\begin{array}{llllll}1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0\end{array}\right]$
So $A^{-1}=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0\end{array}\right]$

The Inverses of Matrix: Order

Order of multiplication is important!

Example

Suppose A, B, C, and D are invertible $n \times n$ matrices and $A=B\left(D-I_{n}\right) C$.
Solve for D in terms of A, B, C and D.

Solution:

$$
\begin{gathered}
D-I_{n}=B^{-1} A C^{-1} \\
D-I_{n}+\ldots \\
D=B^{-1} A C^{-1}+
\end{gathered}
$$

Inverses

Lemma

For invertible and linear $T: V \rightarrow W, V$ is finite-dimensional if and only if W is finite-dimensional. Then $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Theorem (2.18)

Let V, W be finite-dimensional vector spaces with ordered bases β, γ, and $T: V \rightarrow W$ be linear. Then T is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible, and $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.

Inverses (cont.)

Corollary 1

For finite-dimensional vector space V with ordered basis β and linear $T: V \rightarrow V, T$ is invertible if and only if $[T]_{\beta}$ is invertible, and $\left[T^{-1}\right]_{\beta}=\left(\left[T_{\beta}\right]\right)^{-1}$.

Corollary 2

An $n \times n$ matrix A is invertible if and only if L_{A} is invertible, and $\left(L_{A}\right)^{-1}=L_{A^{-1}}$.

Isomorphisms

Definition

Let V, W be vector spaces. V is isomorphic to W if there exists a linear transformation $T: V \rightarrow W$ that is invertible. Such a T is an isomorphism from V onto W.

Isomorphic

Informally, we say that vector space V is isomorphic to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Isomorphisms

Theorem (2.19)
For finite-dimensional vector spaces V and W, V is isomorphic to W if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Corollary

A vector space V over F is isomorphic to F^{n} if and only if $\operatorname{dim}(V)=n$.

Isomorphisms

Theorem (2.20)

Let V, W be finite-dimensional vector spaces over F of dimensions n, m with ordered bases β, γ. Then the function
$\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$, defined by $\Phi(T)=[T]_{\beta}^{\gamma}$ for
$T \in \mathcal{L}(V, W)$, is an isomorphism.

Corollary

For finite-dimensional vector spaces V, W of dimensions n, m, $\mathcal{L}(V, W)$ is finite-dimensional of dimension $m n$.

The Standard Representation

Definition

Let β be an ordered basis for an n-dimensional vector space V over the field F. The standard representation of V with respect to β is the function $\phi_{\beta}: V \rightarrow F^{n}$ defined by $\phi_{\beta}(x)=[x]_{\beta}$ for each $x \in V$.

Theorem (2.21)

For any finite-dimensional vector space V with ordered basis β, ϕ_{β} is an isomorphism.

A set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ in V is linearly independent if and only if $\left\{\left[\mathbf{u}_{1}\right]_{\beta},\left[\mathbf{u}_{2}\right]_{\beta}, \ldots,\left[\mathbf{u}_{p}\right]_{\beta}\right\}$ is linearly independent in \mathbf{F}^{n}.

The Standard Representation: Example

Example

Use coordinate vectors to determine if $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a linearly independent set: $\mathbf{p}_{1}=1-t, \mathbf{p}_{2}=2-t+t^{2}, \mathbf{p}_{3}=2 t+3 t^{2}$.

Solution: The standard basis set for \mathbf{P}_{2} is $\beta=\left\{1, t, t^{2}\right\}$. So

$$
\left[\mathbf{p}_{1}\right]_{\beta}=[],\left[\mathbf{p}_{2}\right]_{\beta}=[]
$$

Then

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & 2 \\
0 & 1 & 3
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

By the IMT, $\left\{\left[\mathbf{p}_{1}\right]_{\beta},\left[\mathbf{p}_{2}\right]_{\beta},\left[\mathbf{p}_{3}\right]_{\beta}\right\}$ is linearly therefore $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is linearly

The Standard Representation: Example

Coordinate vectors allow us to associate vector spaces with subspaces of other vectors spaces.

Example
Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ where $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 3 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$.
Let $H=\operatorname{span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\beta}$, if $\mathbf{x}=\left[\begin{array}{c}9 \\ 13 \\ 15\end{array}\right]$.
Solution: (a) Find c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
13 \\
15
\end{array}\right]
$$

The Standard Representation: Example (cont.)

Corresponding augmented matrix:

$$
\left[\begin{array}{ccc}
3 & 0 & 9 \\
3 & 1 & 13 \\
1 & 3 & 15
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore $c_{1}=\ldots$ and $c_{2}=\ldots$ and so $[\mathbf{x}]_{\beta}=[\quad$.

The Standard Representation: Example (cont.)

H is isomorphic to \mathbf{R}^{2}

