Math 4377/6308 Advanced Linear Algebra 2.5 Change of Bases \& 2.6 Dual Spaces

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

2.5 Change of bases

- Change of Coordinate Matrices.
- Similar Matrices.

The Change of Coordinate Matrix

Theorem (2.22)

Let β and β^{\prime} be ordered bases for a finite-dimensional vector space V, and let $Q=[I V]_{\beta^{\prime}}^{\beta}$. Then
(a) Q is invertible.
(b) For any $v \in V,[v]_{\beta}=Q[v]_{\beta^{\prime}}$.

The Change of Coordinate Matrix (cont.)

$Q=[/ V]_{\beta^{\prime}}^{\beta}$ is called a change of coordinate matrix, and we say that Q changes β^{\prime}-coordinates into β-coordinates.

Note that if Q changes from β^{\prime} into β coordinates, then Q^{-1} changes from β into β^{\prime} coordinates.

Linear Operators

A linear operator is a linear transformation from a vector space V into itself.

Theorem

Let T be a linear operator on a finite-dimensional vector space V with ordered bases β, β^{\prime}. If Q is the change of coordinate matrix from β^{\prime} into β-coordinates, then

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q
$$

Linear Operators (cont.)

Corollary

Let $A \in M_{n \times n}(F)$, and γ an ordered basis for F^{n}. Then $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$, where Q is the $n \times n$ matrix with the vectors in γ as column vectors.

Definition

For $A, B \in M_{n \times n}(F), B$ is similar to A if the exists an invertible matrix Q such that $B=Q^{-1} A Q$.

2.6 Dual Spaces

- Dual Spaces and Dual Bases
- Transposes

Linear Functionals

A linear functional on a vector space V is a linear transformation from V into its field of scalars F.

Example

Let V be the continuous real-valued functions on $[0,2 \pi]$. For a fix $g \in V$, a linear functional $h: V \rightarrow R$ is given by

$$
h(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) g(t) d t
$$

Example

Let $V=M_{n \times n}(F)$, then $f: V \rightarrow F$ with $f(A)=\operatorname{tr}(A)$ is a linear functional.

Coordinate Functions

Example

Let $\beta=\left\{x_{1}, \cdots, x_{n}\right\}$ be a basis for a finite-dimensional vector space V. Define $f_{i}(x)=a_{i}$, where

$$
[x]_{\beta}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

is the coordinate vector of x relative to β. Then f_{i} is a linear functional on V called the i th coordinate function with respect to the basis β. Note that $f_{i}\left(x_{j}\right)=\delta_{i j}$.

Dual Spaces

Definition

For a vector space V over F, the dual space of V is the vector space $V^{*}=\mathcal{L}(V, F)$.

Note that for finite-dimensional V,

$$
\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(\mathcal{L}(V, F))=\operatorname{dim}(V) \cdot \operatorname{dim}(F)=\operatorname{dim}(V)
$$

so V and V^{*} are isomorphic. Also, the double dual $V^{* *}$ of V is the dual of V^{*}.

Dual Bases

Theorem (2.24)

Let $\beta=\left\{x_{1}, \cdots, x_{n}\right\}$ be an ordered basis for finite-dimensional vector space V, and let f_{i} be the ith coordinate function w.r.t. β, and $\beta^{*}=\left\{f_{1}, \cdots, f_{n}\right\}$. Then β^{*} is an ordered basis for V^{*} and for $f \in V^{*}$,

$$
f=\sum_{i=1}^{n} f\left(x_{i}\right) f_{i}
$$

Definition

The ordered basis $\beta^{*}=\left\{f_{1}, \cdots, f_{n}\right\}$ of V^{*} that satisfies $f_{i}\left(x_{j}\right)=\delta_{i j}$ is called the dual basis of β.

Dual Bases (cont.)

Theorem (2.25)

Let V, W be finite-dimensional vector spaces over F with ordered bases β, γ. For any linear $T: V \rightarrow W$, the mapping $T^{t}: W^{*} \rightarrow V^{*}$ defined by $T^{t}(g)=g T$ for all $g \in W^{*}$ is linear with the property $\left[T^{t}\right]_{\gamma^{*}}^{\beta^{*}}=\left([T]_{\beta}^{\gamma}\right)^{t}$.

Double Dual Isomorphism

For a vector $x \in V$, define $\hat{x}: V^{*} \rightarrow F$ by $\hat{x}(f)=f(x)$ for every $f \in V^{*}$. Note that \hat{x} is a linear functional on V^{*}, so $\hat{x} \in V^{* *}$.

Lemma

For finite-dimensional vector space V and $x \in V$, if $\hat{x}(f)=0$ for all $f \in V^{*}$, then $x=0$.

Double Dual Isomorphism (cont.)

Theorem (2.26)

Let V be a finite-dimensional vector space, and define $\psi: V \rightarrow V^{* *}$ by $\psi(x)=\hat{x}$. Then ψ is an isomorphism.

Corollary

For finite-dimensional V with dual space V^{*}, every ordered basis for V^{*} is the dual basis for some basis for V.

