Math 4377/6308 Advanced Linear Algebra

 3.1 Elementary Matrix Operations and Elementary Matrix

 3.1 Elementary Matrix Operations and Elementary Matrix}

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

3.1 Elementary Matrix Operations and Elementary Matrix

- Elementary Matrix Operations
- Solving a System by Row Eliminations: Example
- Elementary Matrix
- Multiplication by Elementary Matrices
- Properties of Elementary Operations
- Inverses of Elementary Matrices

Elementary Matrix Operations

Definition (Elementary Matrix Operations)

Elementary row/column operations on an $m \times n$ matrix A :
(1) (Interchange) interchanging any two rows/columns
(2) (Scaling) multiplying any row/column by nonzero scalar
(3) (Replacement) adding any scalar multiple of a row/column to another row/column

Row Equivalent Matrices

Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Solving a System by Row Eliminations: Example

Example (Row Eliminations to a Triangular Form)

$$
\left.\begin{array}{rl}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9 \\
\Downarrow \begin{array}{l}
\Downarrow
\end{array} \\
x_{1}-2 x_{2}+8 x_{3} & =0 \\
2 x_{2}-8 \\
-3 x_{2}+13 x_{3} & =-9
\end{array}\right]\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Solving a System by Row Eliminations: Example (cont.)

Example (Row Eliminations to a Diagonal Form)

$$
\left.\begin{array}{rlrl}
x_{1}-2 x_{2} & + & x_{3} & =0 \\
x_{2} & - & 4 x_{3} & = \\
x_{3} & =3 \\
& \\
& & \Downarrow
\end{array}\right]\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Solution: $(29,16,3)$

Elementary Matrix

Definition

An $n \times n$ elementary matrix is obtained by performing an elementary operation on I_{n}. It is of type 1,2 , or 3 , depending on which elementary operation was performed.

Example

$$
\begin{aligned}
& \text { Let } E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \\
& E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \text { and } A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] .
\end{aligned}
$$

E_{1}, E_{2}, and E_{3} are elementary matrices. Why?

Multiplication by Elementary Matrices

Observe the following products and describe how these products can be obtained by elementary row operations on A.
$E_{1} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{ccc}a & b & c \\ 2 d & 2 e & 2 f \\ g & h & i\end{array}\right]$
$E_{2} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ g & h & i \\ d & e & f\end{array}\right]$
$E_{3} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ 3 a+g & 3 b+h & 3 c+i\end{array}\right]$
If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_{m}.

Properties of Elementary Operations

Theorem (3.1)

Let $A \in M_{m \times n}(F)$, and B obtained from an elementary row (or column) operation on A. Then there exists an $m \times m$ (or $n \times n$) elementary matrix E s.t. $B=E A$ (or $B=A E$). This E is obtained by performing the same operation on I_{m} (or I_{n}). Conversely, for elementary E, then $E A$ (or $A E$) is obtained by performing the same operation of A as that which produces E from I_{m} (or I_{n}).

Example: Row Eliminations to a Triangular Form - Step 1

$$
\begin{aligned}
& \begin{aligned}
& x_{1}-2 x_{2}+x_{3}=0 \\
& 2 x_{2}-8 x_{3}= \\
&-4 x_{1}+5 x_{2}+9 x_{3}= \\
&-9
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]=A \\
& \Downarrow \quad E_{1} \\
& \left.\begin{array}{rl}
x_{1}-2 x_{2}+ & x_{3}
\end{array}\right)=0 \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]=A_{1} \\
& A_{1}=E_{1} A, \quad E_{1}=[\square
\end{aligned}
$$

Example: Row Eliminations to a Triangular Form - Step 2

$$
\begin{array}{rl}
x_{1}-2 x_{2}+r & x_{3} \\
2 x_{2} & - \\
-3 x_{3} & = \\
3 x_{2} & 13 x_{3}
\end{array}=-9 \begin{array}{r}
8
\end{array} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]=A_{1}
$$

Example: Row Eliminations to a Triangular Form - Step 3

$$
\begin{aligned}
x_{1}-2 x_{2}+r x_{3} & = \\
x_{2} & - \\
4 x_{3} & = \\
-3 x_{2} & +13 x_{3}
\end{aligned}=-9\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]=A_{2}
$$

Example: Row Eliminations to a Diagonal Form - Step 4

$$
\begin{aligned}
& \begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
x_{3} & =3
\end{aligned}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]=A_{3} \\
& \Downarrow \quad E_{4} \\
& \begin{array}{rlll}
x_{1}-2 x_{2} & = & -3 \\
x_{2} & = & 16 \\
x_{3} & =3
\end{array}\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]=A_{4} \\
& A_{4}=E_{4} A_{3}, \quad E_{4}=[\square]
\end{aligned}
$$

Example: Row Eliminations to a Diagonal Form - Step 5

$$
\begin{aligned}
& \begin{array}{rlll}
x_{1}-2 x_{2} & & =-3 \\
x_{2} & = & 16 \\
x_{3} & =3
\end{array}\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]=A_{4} \\
& \Downarrow \quad E_{5} \\
& x_{1} \quad x_{2} \quad=29 \quad\left[\begin{array}{rrrr}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]=A_{5} \\
& A_{5}=E_{5} A_{4}, \quad E_{5}=[\square
\end{aligned}
$$

Inverses of Elementary Matrices

Theorem (3.2)

Elementary matrices are invertible, and the inverse is an elementary matrix of the same type.

Elementary matrices are invertible because row operations are inversible. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

Example

$$
E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \quad E_{3}^{-1}=[\square
$$

Inverses of Elementary Matrices: Examples

Example

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{1}^{-1}=[\square
$$

Example

$$
E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad E_{2}^{-1}=[\square
$$

