Math 4377/6308 Advanced Linear Algebra 3.2 The Rank of a Matrix and Matrix Inverses

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

3.2 The Rank of a Matrix and Matrix Inverses

- The Rank of a Matrix
 - Defintion
 - Properties of the Rank of a Matrix
 - Determining the Rank of a Matrix
 - Rank of Matrix Products
- The Matrix Inverses

The Rank of a Matrix

Definition (The Rank of a Matrix)

The rank of a matrix $A \in M_{m \times n}(F)$ is the rank of the linear transformation $L_A : F^n \to F^m$.

$$\operatorname{rank}(A) = \operatorname{rank}(L_A) = \dim(R(L_A))$$

An $n \times n$ matrix is invertible if and only if its rank is n.

The Rank of a Matrix

Theorem (3.3)

Let $T: V \to W$ be linear between finite-dimensional V, W with ordered bases β , γ . Then

 $\operatorname{rank}(T) = \operatorname{rank}([T]^{\gamma}_{\beta}).$

$$\operatorname{rank}(T) = \operatorname{rank}(L_A), \operatorname{nullity}(T) = \operatorname{nullity}(L_A), \quad \text{ with } A = [T]_{\beta}^{\gamma}$$

< ∃ > <

3.2 Rank & Inverses

Theorem (3.4)

Let A be $m \times n$, and P, Q invertible of sizes $m \times m$, $n \times n$. Then

(a)
$$\operatorname{rank}(AQ) = \operatorname{rank}(A)$$

- (b) $\operatorname{rank}(PA) = \operatorname{rank}(A)$
- (c) $\operatorname{rank}(PAQ) = \operatorname{rank}(A)$

(a) Note

$$R(L_{AQ}) = R(L_A L_Q) = L_A L_Q(F^n) = L_A(L_Q(F^n)) = L_A(F^n) = R(L_A).$$

Then

$$\operatorname{rank}(AQ) = \dim(R(L_{AQ})) = \dim(R(L_A)) = \operatorname{rank}(A).$$

Corollary

Elementary row/column operations are rank-preserving.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

pring, 2015 5 / 1

Determining the Rank of a Matrix

Theorem (3.5)

rank(A) is the maximum number of linearly independent columns of A, that is, the dimension of the subspace generated by its columns.

Note

$$R(L_A) = \operatorname{span}(\{L_A(e_1), \cdots, L_A(e_n)\}) = \operatorname{span}(\{a_1, \cdots, a_n\})$$

where $L_A(e_j) = Ae_j = a_j$, with a_j the *j*th column of *A*. Then

$$\operatorname{rank}(A) = \operatorname{rank}(L_A) = \dim(R(L_A)) = \dim(\operatorname{span}(\{a_1, \cdots, a_n\}))$$

Determining the Rank of a Matrix

Elementary row/column operations are rank-preserving.

Jiwen He, University of Houston

5pring, 2015 7

ank Inverses

Determining the Rank of a Matrix (cont.)

Theorem (3.6)

Let A be $m \times n$ with rank(A) = r. Then $r \le m$, $r \le n$, and by finite number of elementary row/column operations A can be transformed into

$$D = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

where O_1 , O_2 , O_3 are zero matrices, that is, $D_{ii} = 1$ for $i \le r$ and $D_{ij} = 0$ otherwise.

Elementary row/column operations are rank-preserving.

$$A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \sim \begin{bmatrix} -1 & 2 & 3 & 6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

rank(A) = r = 2

Determining the Rank of a Matrix (cont.)

3.2 Rank & Inverses

Corollary 1

Let A be $m \times n$ of rank r. Then there exists invertible B, C of sizes $m \times m$, $n \times n$ such that

$$D = BAC = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebi

Determining the Rank of a Matrix (cont.)

Corollary 2

Let A be $m \times n$, then

- (a) $\operatorname{rank}(A^t) = \operatorname{rank}(A)$
- (b) rank(A) is the maximum number of linearly independent rows, that is, the dimension of the subspace generated by its rows.
- (c) The rows and columns of A generate subspaces of the same dimension, namely rank(A)

Corollary 3

Every invertible matrix is a product of elementary matrices.

pring, 2015 10 / 1

ank Inverses

Matrix Inverses as Products of Elementary Matrices

Example

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$
. Then
 $E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
 $E_2 (E_1 A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$
 $E_3 (E_2 E_1 A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$

Jiwen He, University of Houston

11 / 15

中

3.2 Rank & Inverses

nk Inverses

Matrix Inverses as Products of Elementary Matrices (cont.)

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

pring, 2015 12 /

Rank Inverse

Rank of Matrix Products Theorem (3.7)

Let $T : V \rightarrow W$ and $U : W \rightarrow Z$ be linear on finite-dimensional V. W. Z. Let A, B be matrices such that AB is defined. Then

- (a) $\operatorname{rank}(UT) \leq \operatorname{rank}(U)$
- (b) $\operatorname{rank}(UT) \leq \operatorname{rank}(T)$
- (c) $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$
- (d) $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$

The Inverse of a Matrix

Definition

Let A, B be $m \times n$, $m \times p$ matrices. The augmented matrix (A|B) is the $m \times (n + p)$ matrix (AB).

If A is invertible $n \times n$, then $(A|I_n)$ can be transformed into $(I_n|A^{-1})$ by finite number of elementary row operations.

If A is invertible $n \times n$ and $(A|I_n)$ is transformed into $(I_n|B)$ by finite number of elementary row operations, then $B = A^{-1}$.

If A is non-invertible $n \times n$, then any attempt to transform $(A|I_n)$ into $(I_n|B)$ produces a row whose first n entries are zero.

The Inverses of Matrix: Example

Example

Find the inverse of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, if it exists.

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$

