Math 4377/6308 Advanced Linear Algebra

3.2 The Rank of a Matrix and Matrix Inverses

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

3.2 The Rank of a Matrix and Matrix Inverses

- The Rank of a Matrix
- Defintion
- Properties of the Rank of a Matrix
- Determining the Rank of a Matrix
- Rank of Matrix Products
- The Matrix Inverses

The Rank of a Matrix

Definition (The Rank of a Matrix)

The rank of a matrix $A \in M_{m \times n}(F)$ is the rank of the linear transformation $L_{A}: F^{n} \rightarrow F^{m}$.

$$
\operatorname{rank}(A)=\operatorname{rank}\left(L_{A}\right)=\operatorname{dim}\left(R\left(L_{A}\right)\right)
$$

An $n \times n$ matrix is invertible if and only if its rank is n.

The Rank of a Matrix

Theorem (3.3)

Let $T: V \rightarrow W$ be linear between finite-dimensional V, W with ordered bases β, γ. Then

$$
\operatorname{rank}(T)=\operatorname{rank}\left([T]_{\beta}^{\gamma}\right)
$$

$$
\operatorname{rank}(T)=\operatorname{rank}\left(L_{A}\right), \operatorname{nullity}(T)=\operatorname{nullity}\left(L_{A}\right), \quad \text { with } A=[T]_{\beta}^{\gamma}
$$

Properties of the Rank of a Matrix

Theorem (3.4)

Let A be $m \times n$, and P, Q invertible of sizes $m \times m, n \times n$. Then
(a) $\operatorname{rank}(A Q)=\operatorname{rank}(A)$
(b) $\operatorname{rank}(P A)=\operatorname{rank}(A)$
(c) $\operatorname{rank}(P A Q)=\operatorname{rank}(A)$
(a) Note
$R\left(L_{A Q}\right)=R\left(L_{A} L_{Q}\right)=L_{A} L_{Q}\left(F^{n}\right)=L_{A}\left(L_{Q}\left(F^{n}\right)\right)=L_{A}\left(F^{n}\right)=R\left(L_{A}\right)$.
Then

$$
\operatorname{rank}(A Q)=\operatorname{dim}\left(R\left(L_{A Q}\right)\right)=\operatorname{dim}\left(R\left(L_{A}\right)\right)=\operatorname{rank}(A)
$$

Corollary

Elementary row/column operations are rank-preserving.

Determining the Rank of a Matrix

Theorem (3.5)

$\operatorname{rank}(A)$ is the maximum number of linearly independent columns of A, that is, the dimension of the subspace generated by its columns.

Note

$$
R\left(L_{A}\right)=\operatorname{span}\left(\left\{L_{A}\left(e_{1}\right), \cdots, L_{A}\left(e_{n}\right)\right\}\right)=\operatorname{span}\left(\left\{a_{1}, \cdots, a_{n}\right\}\right)
$$

where $L_{A}\left(e_{j}\right)=A e_{j}=a_{j}$, with a_{j} the j th column of A. Then

$$
\operatorname{rank}(A)=\operatorname{rank}\left(L_{A}\right)=\operatorname{dim}\left(R\left(L_{A}\right)\right)=\operatorname{dim}\left(\operatorname{span}\left(\left\{a_{1}, \cdots, a_{n}\right\}\right)\right)
$$

Determining the Rank of a Matrix

Elementary row/column operations are rank-preserving.

Example (Row Reduction to Echelon Form)

$$
\begin{gathered}
A=\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
2 & -5 & -6 & -12 \\
1 & -3 & -3 & -6
\end{array}\right] \sim\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{rank}(A)=?
\end{gathered}
$$

Determining the Rank of a Matrix (cont.)

Theorem (3.6)

Let A be $m \times n$ with $\operatorname{rank}(A)=r$. Then $r \leq m, r \leq n$, and by finite number of elementary row/column operations A can be transformed into

$$
D=\left(\begin{array}{ll}
I_{r} & O_{1} \\
O_{2} & O_{3}
\end{array}\right)
$$

where O_{1}, O_{2}, O_{3} are zero matrices, that is, $D_{i i}=1$ for $i \leq r$ and $D_{i j}=0$ otherwise.

Elementary row/column operations are rank-preserving.

$$
A=\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
2 & -5 & -6 & -12 \\
1 & -3 & -3 & -6
\end{array}\right] \sim\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{rank}(A)=r=2
$$

Determining the Rank of a Matrix (cont.)

Corollary 1

Let A be $m \times n$ of rank r. Then there exists invertible B, C of sizes $m \times m, n \times n$ such that

$$
D=B A C=\left(\begin{array}{ll}
I_{r} & O_{1} \\
O_{2} & O_{3}
\end{array}\right)
$$

$B A C=\left[B_{i j} ?\right]\left[\begin{array}{rrrr}-1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6\end{array}\right]\left[C_{1 k} ?\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=D$

Determining the Rank of a Matrix (cont.)

Corollary 2

Let A be $m \times n$, then
(a) $\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}(A)$
(b) $\operatorname{rank}(A)$ is the maximum number of linearly independent rows, that is, the dimension of the subspace generated by its rows.
(c) The rows and columns of A generate subspaces of the same dimension, namely $\operatorname{rank}(A)$

Corollary 3

Every invertible matrix is a product of elementary matrices.

Matrix Inverses as Products of Elementary Matrices

Example

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0
\end{array}\right] \text {. Then } \\
& E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& E_{2}\left(E_{1} A\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \\
& E_{3}\left(E_{2} E_{1} A\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Matrix Inverses as Products of Elementary Matrices (cont.)

Example (cont.)

So

$$
E_{3} E_{2} E_{1} A=I_{3} .
$$

Then multiplying on the right by A^{-1}, we get

$$
E_{3} E_{2} E_{1} A_{-----}=I_{3-----}
$$

So

$$
E_{3} E_{2} E_{1} I_{3}=A^{-1}
$$

Rank of Matrix Products

Theorem (3.7)
Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear on finite-dimensional V, W, Z. Let A, B be matrices such that $A B$ is defined. Then
(a) $\operatorname{rank}(U T) \leq \operatorname{rank}(U)$
(b) $\operatorname{rank}(U T) \leq \operatorname{rank}(T)$
(c) $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$
(d) $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$

The Inverse of a Matrix

Definition

Let A, B be $m \times n, m \times p$ matrices. The augmented matrix $(A \mid B)$ is the $m \times(n+p)$ matrix $(A B)$.

If A is invertible $n \times n$, then $\left(A \mid I_{n}\right)$ can be transformed into ($I_{n} \mid A^{-1}$) by finite number of elementary row operations.

If A is invertible $n \times n$ and $\left(A \mid I_{n}\right)$ is transformed into $\left(I_{n} \mid B\right)$ by finite number of elementary row operations, then $B=A^{-1}$.

If A is non-invertible $n \times n$, then any attempt to transform $\left(A \mid I_{n}\right)$ into $\left(I_{n} \mid B\right)$ produces a row whose first n entries are zero.

The Inverses of Matrix: Example

Example

Find the inverse of $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, if it exists.
Solution:
$\left[\begin{array}{ll}A & I\end{array}\right]=\left[\begin{array}{cccccc}2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1\end{array}\right] \sim \cdots \sim\left[\begin{array}{llllll}1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0\end{array}\right]$
So $A^{-1}=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0\end{array}\right]$

