Math 4377/6308 Advanced Linear Algebra

3.3 Systems of Linear Equations - Theoretical Aspects

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

3.3 Systems of Linear Equations - Theoretical Aspects

- Systems of Linear Equations
- Solution Sets: Homogeneous System
- Solution Sets: Nonhomogeneous System
- Invertibility
- Consistency

Systems of Linear Equations

System of m linear equations in n unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

or

$$
A x=b
$$

with coefficient matrix A and vectors x, b :

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \quad x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Solution Sets

- A solution to the system $A x=b$:

$$
s=\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right) \in F^{n} \quad \text { such that } A s=b .
$$

- The solution set of the system: The set of all solutions
- Consistent system: Nonempty solution set
- Inconsistent system: Empty solution set

Solution Sets: Homogeneous System

Definition

$A x=b$ is homogeneous if $b=0$, otherwise nonhomogeneous.

Theorem (3.8)

Let $A x=0$ be a homogeneous system of m equations in n unknowns. The set of all solutions to $A x=0$ is $K=N\left(L_{A}\right)$, which is a subspace of F^{n} of dimension $n-\operatorname{rank}\left(L_{A}\right)=n-\operatorname{rank}(A)$.

Homogeneous System: Trivial Solutions

Example

$$
\begin{array}{r}
x_{1}+10 x_{2}=0 \\
2 x_{1}+20 x_{2}=0
\end{array}
$$

Corresponding matrix equation $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{ll}
1 & 10 \\
2 & 20
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Trivial solution: $\mathbf{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad$ or $\quad \mathbf{x}=\mathbf{0}$

Homogeneous System: Nontrivial Solutions

The homogeneous system $A \mathbf{x}=\mathbf{0}$ always has the trivial solution, $\mathbf{x}=\mathbf{0}$.

Nontrivial Solution

Nonzero vector solutions are called nontrivial solutions.
Example (cont.)
Do nontrivial solutions exist?

$$
\left[\begin{array}{lll}
1 & 10 & 0 \\
2 & 20 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 10 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Consistent system with a free variable has infinitely many solutions.

A homogeneous equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions if and only if the system of equations has

Homogeneous System: Example 1

Example (1)

Determine if the following homogeneous system has nontrivial solutions and then describe the solution set.

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-6 x_{3}=0 \\
& 4 x_{1}+8 x_{2}-10 x_{3}=0
\end{aligned}
$$

Solution: There is at least one free variable (why?)
\Longrightarrow nontrivial solutions exist

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
2 & 4 & -6 & 0 \\
4 & 8 & -10 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
4 & 8 & -10 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]} \\
\sim\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \Longrightarrow \quad x_{1}= \\
x_{2} \quad \text { is free }
\end{gathered}
$$

$$
x_{3}=
$$

Homogeneous System: Example 1 (cont.)

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0
\end{array}\right]=--\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=x_{2} \mathbf{v}
$$

Graphical representation:

solution set $=\operatorname{span}\{\mathbf{v}\}=$ line through $\mathbf{0}$ in \mathbf{R}^{3}

Homogeneous System: Non Trivial Solutions

Corollary

If $m<n$, the system $A x=0$ has a nonzero solution.

Solution Sets: Nonhomogeneous System

Theorem (3.9)

Let K be the solution set of $A x=b$, and let K_{H} be the solution set of the corresponding homogeneous system $A x=0$. Then for any solution s to $A x=b$:

$$
K=\{s\}+K_{H}=\left\{s+k: k \in K_{H}\right\} .
$$

Nonhomogeneous System: Example 2

Example (2)

Describe the solution set of

$$
\begin{gathered}
2 x_{1}+4 x_{2}-6 x_{3}=0 \\
4 x_{1}+8 x_{2}-10 x_{3}=4 \\
\text { (same left side as in the previous example) }
\end{gathered}
$$

Solution:

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
2 & 4 & -6 & 0 \\
4 & 8 & -10 & 4
\end{array}\right] \quad \text { row reduces to } \quad\left[\begin{array}{llll}
1 & 2 & 0 & 6 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
\end{gathered}
$$

Nonhomogeneous System: Example 2 (cont.)

$$
\mathbf{x}=\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=\mathbf{p}+x_{2} \mathbf{v}
$$

Graphical representation:

$$
\text { Parallel solution sets of } A \mathbf{x}=\mathbf{0} \& A \mathbf{x}=\mathbf{b}
$$

Nonhomogeneous System: Recap of Previous Two Examples

Example (1. Solution of $\mathrm{Ax}=\mathbf{0}$)

$$
\mathbf{x}=x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=x_{2} \mathbf{v}
$$

$\mathbf{x}=x_{2} \mathbf{v}=$ parametric equation of line passing through $\mathbf{0}$ and \mathbf{v}

Example (2. Solution of $\mathbf{A x}=\mathbf{b}$)

$$
\mathbf{x}=\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=\mathbf{p}+x_{2} \mathbf{v}
$$

$\mathbf{x}=\mathbf{p}+x_{2} \mathbf{v}=$ parametric equation of line passing through \mathbf{p} parallel to \mathbf{v}

Nonhomogeneous System

Parallel solution sets of

$$
A \mathbf{x}=\mathbf{b} \text { and } A \mathbf{x}=\mathbf{0}
$$

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is any solution of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Nonhomogeneous System: Example

Example

Describe the solution set of $2 x_{1}-4 x_{2}-4 x_{3}=0$; compare it to the solution set $2 x_{1}-4 x_{2}-4 x_{3}=6$.

Solution: Corresponding augmented matrix to $2 x_{1}-4 x_{2}-4 x_{3}=0$:

$$
\left[\begin{array}{llll}
2 & -4 & -4 & 0 \tag{fill-in}
\end{array}\right] \sim
$$

Vector form of the solution:

$$
\mathbf{v}=\left[\begin{array}{l}
2 x_{2}+2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=---\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+\ldots-\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Corresponding augmented matrix to $2 x_{1}-4 x_{2}-4 x_{3}=6$:

$$
\left[\begin{array}{cccc}
2 & -4 & -4 & 6 \tag{fill-in}
\end{array}\right] \sim
$$

Nonhomogeneous System: Example (cont.)

Vector form of the solution:

$$
\mathbf{v}=\left[\begin{array}{cc}
3+2 x_{2}+2 x_{3} \\
x_{2} & \\
& x_{3}
\end{array}\right]=[\underbrace{}_{-}
$$

Parallel Solution Sets of $A \mathbf{x}=\mathbf{0}$ and $A \mathbf{x}=\mathbf{b}$

Invertibility

Theorem (3.10)

If A is invertible then the system $A x=b$ has exactly one solution $x=A^{-1} b$. Conversely, if the system has exactly one solution then A is invertible.

Consistency

Theorem (3.11)

The system $A x=b$ is consistent if and only if

$$
\operatorname{rank}(A)=\operatorname{rank}(A \mid b)
$$

