Math 4377/6308 Advanced Linear Algebra 4.1 Determinants of Order 2

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

4.1 Determinants of Order 2

- Definition
- Linearity
- Inverses
- Orientation of an Ordered Basis
- Area of a Parallelogram

Determinants of Order 2: Definition

Definition

For the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

the determinant of A, denoted $\operatorname{det}(A)$ or $|A|$, is the scalar $a d-b c$.

Determinants: Linearity

Theorem (4.1)

 det : $M_{2 \times 2}(F) \rightarrow F$ is a linear function of each row of a 2×2 matrix when the other row is held fixed. That is, for $u, v, w \in F^{2}$ and $k \in F$,$$
\begin{aligned}
& \operatorname{det}\binom{u+k v}{w}=\operatorname{det}\binom{u}{w}+k \operatorname{det}\binom{v}{w} \\
& \operatorname{det}\binom{w}{u+k v}=\operatorname{det}\binom{w}{u}+k \operatorname{det}\binom{w}{v}
\end{aligned}
$$

Theorem (4.2)

The determinant of $A \in M_{2 \times 2}(F)$ is nonzero if and only if A is invertible. If A is invertible then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{det}\left(\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right)
$$

Determinant and Orientation of an Ordered Basis

The orientation of an ordered basis $\beta=\{u, v\}$ for \mathbb{R}^{2} is defined by

$$
\operatorname{Orient}\binom{u}{v}==\frac{\operatorname{det}\binom{u}{v}}{\left|\operatorname{det}\binom{u}{v}\right|}
$$

Determinant and Left/Right-Handed Coordinate System

Note that Orient $\binom{u}{v}= \pm 1$, and Orient $\binom{u}{v}=1$ if and only if $\{u, v\}$ forms a right-handed coordinate system (u can be rotated in a counterclockwise direction through an angle θ, with $0<\theta<\pi$, to coincide with v).

Determinant and Area of a Parallelogram

The area of the parallelogram determined by u and v :

$$
\text { Area }\binom{u}{v}=\text { Orient }\binom{u}{v} \cdot \operatorname{det}\binom{u}{v}=\left|\operatorname{det}\binom{u}{v}\right|
$$

