Math 4377/6308 Advanced Linear Algebra 4.3 Properties of Determinants

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

5pring, 2015 1 /

4.3 Properties of Determinants

4.2

- Determinants of Products of Matrices
- Determinant of Inverse of Matrix
- Determinant of Transpose of Matrix
- Cramer's Rule and Solution of Linear System

Properties of Determinants: Product

Theorem (4.7)

For $A, B \in M_{n \times n}(F)$, $det(AB) = det(A) \cdot det(B)$.

4.2

A ∰ ▶ A ∃ ▶ A

Properties of Determinants: Inverse

Corollary

 $A \in M_{nn}(F)$ is invertible if and only if $\det(A) \neq 0$. If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.

4.2

Properties of Determinants: Transpose

4.2

Theorem (4.8)

For $A \in M_{n \times n}(F)$, $\det(A^t) = \det(A)$.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebr

5 / Spring, 2015

___ ▶

3 1 4

Properties of Determinants: Cramer's Rule

Theorem (4.9 - Cramer's Rule)

Let Ax = b be a system of n linear equations in n unknowns. If $det(A) \neq 0$, it has a unique solution $x = (x_1, \dots, x_n)^t$ with $x_k = \frac{det(M_k)}{det(A)}$, where M_k is A with column k replaced by b.

4 0

- 4 個 ト - 4 三 ト - 4 三 ト