Math 4377/6308 Advanced Linear Algebra 5.1 Eigenvalues and Eigenvectors

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

5.1 Eigenvalues and Eigenvectors

- Diagonalization
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Properties

Diagonalization

Definition

A linear operator T on a finite-dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is diagonalizable if L_{A} is diagonalizable.

Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v)=\lambda v$.

Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^{n}$ is an eigenvector of A if v is an eigenvector of L_{A}; that is, if $A v=\lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.

Eigenvalues and Eigenvectors: Example

Example

Let $A=\left[\begin{array}{rr}0 & -2 \\ -4 & 2\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. Examine the images of \mathbf{u} and \mathbf{v} under multiplication by A.

Solution

$$
\begin{gathered}
A \mathbf{u}=\left[\begin{array}{rr}
0 & -2 \\
-4 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]= \\
-2\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-2 \mathbf{u}
\end{gathered}
$$

\mathbf{u} is called an eigenvector of A since $A \mathbf{u}$ is a multiple of \mathbf{u}.

$$
A \mathbf{v}=\left[\begin{array}{rr}
0 & -2 \\
-4 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
6
\end{array}\right] \neq \lambda \mathbf{v}
$$

\mathbf{v} is not an eigenvector of A since $A \mathbf{v}$ is not a multiple of \mathbf{v}.

$A \mathbf{u}=-2 \mathbf{u}$, but $A \mathbf{v} \neq \lambda \mathbf{v}$

Eigenvalues and Eigenvectors: Example

Example

Show that 4 is an eigenvalue of $A=\left[\begin{array}{rr}0 & -2 \\ -4 & 2\end{array}\right]$ and find the corresponding eigenvectors.

Solution: Scalar 4 is an eigenvalue of A if and only if $A \mathbf{x}=4 \mathbf{x}$ has a nontrivial solution.

$$
\begin{gathered}
A \mathbf{x}-4 \mathbf{x}=\mathbf{0} \\
A \mathbf{x}-4(--) \mathbf{x}=\mathbf{0} \\
(A-4 I) \mathbf{x}=\mathbf{0}
\end{gathered}
$$

To solve $(A-4 I) \mathbf{x}=\mathbf{0}$, we need to find $A-4 /$ first:

$$
A-4 I=\left[\begin{array}{rr}
0 & -2 \\
-4 & 2
\end{array}\right]-\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
-4 & -2 \\
-4 & -2
\end{array}\right]
$$

Eigenvalues and Eigenvectors: Example

Now solve $(A-4 I) \mathbf{x}=\mathbf{0}$:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-4 & -2 & 0 \\
-4 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow \quad \mathbf{x}=\left[\begin{array}{c}
-\frac{1}{2} x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] .
\end{aligned}
$$

Each vector of the form $x_{2}\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$ is an eigenvector corresponding to the eigenvalue

Eigenspace for $\lambda=4$ $\lambda=4$.

The set of all solutions to $(A-\lambda /) \mathbf{x}=\mathbf{0}$ is called the eigenspace of A corresponding to λ.

Diagonalization

Theorem (5.1)

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ is an ordered basis of eigenvectors of T, and $D=[T]_{\beta}$, then D is a diagonal matrix and $D_{j j}$ is the eigenvalue corresponding to v_{j} for $1 \leq j \leq n$.

Diagonalization

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.

Characteristic Polynomial

Theorem (5.2)

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Characteristic Polynomial

Definition

Let $A \in M_{n \times n}(F)$. The polynomial $f(t)=\operatorname{det}\left(A-t l_{n}\right)$ is called the characteristic polynomial of A.

Characteristic Polynomial

Definition

Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We define the characteristic polynomial $f(t)$ of T to be the characteristic polynomial of $A=[T]_{\beta}$: $f(t)=\operatorname{det}\left(A-t I_{n}\right)$.

Properties

\square
Theorem (5.3)
Let $A \in M_{n \times n}(F)$.
(a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^{n}$.
(b) A has at most n distinct eigenvalues.

Properties

Theorem (5.4)
Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T-\lambda I)$.

