Math 4377/6308 Advanced Linear Algebra

5.1 Eigenvalues and Eigenvectors

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377
5.1 Eigenvalues and Eigenvectors

- Diagonalization
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Properties
Definition

A linear operator T on a finite-dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_\beta$ is a diagonal matrix. A square matrix A is diagonalizable if L_A is diagonalizable.
Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v) = \lambda v$.

Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^n$ is an eigenvector of A if v is an eigenvector of L_A; that is, if $Av = \lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.
Eigenvalues and Eigenvectors: Example

Example

Let \(A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \), \(u = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), and \(v = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \). Examine the images of \(u \) and \(v \) under multiplication by \(A \).

Solution

\[
Au = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2u
\]

\(u \) is called an eigenvector of \(A \) since \(Au \) is a multiple of \(u \).

\[
Av = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \neq \lambda v
\]

\(v \) is not an eigenvector of \(A \) since \(Av \) is not a multiple of \(v \).

\(Au = -2u \), but \(Av \neq \lambda v \).
Show that 4 is an eigenvalue of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$ and find the corresponding eigenvectors.

Solution: Scalar 4 is an eigenvalue of A if and only if $Ax = 4x$ has a nontrivial solution.

$$Ax - 4x = 0$$

$$(A - 4I)x = 0.$$

To solve $(A - 4I)x = 0$, we need to find $A - 4I$ first:

$$A - 4I = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ -4 & -2 \end{bmatrix}.$$
Now solve \((A-4I)x = 0\):

\[
\begin{bmatrix}
-4 & -2 & 0 \\
-4 & -2 & 0
\end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
x = \begin{bmatrix} -\frac{1}{2}x_2 \\ x_2 \\ \frac{1}{2} \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix}.
\]

Each vector of the form \(x_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix}\) is an eigenvector corresponding to the eigenvalue \(\lambda = 4\).

The set of all solutions to \((A-\lambda I)x = 0\) is called the \textbf{eigenspace} of \(A\) corresponding to \(\lambda\).
A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta = \{v_1, \cdots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_\beta$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \leq j \leq n$.
Diagonalization

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.
Theorem (5.2)

Let $A \in M_{n\times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.
Characteristic Polynomial

Definition

Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tl_n)$ is called the characteristic polynomial of A.
Characteristic Polynomial

Definition

Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We define the characteristic polynomial $f(t)$ of T to be the characteristic polynomial of $A = [T]_{\beta}$:

$$f(t) = \det(A - tl_n).$$
Theorem (5.3)

Let $A \in M_{n \times n}(F)$.

(a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^n$.

(b) A has at most n distinct eigenvalues.
Theorem (5.4)

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.