Math 4377/6308 Advanced Linear Algebra

5.2 Diagonalizability

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377
5.2 Diagonalizability

- Diagonalizability
- Multiplicity
- Direct Sums
Diagonalizability

Theorem (5.5)

Let T be a linear operator on a vector space V, and let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T. If v_1, \ldots, v_k are the corresponding eigenvectors, then \{${v_1, \ldots, v_k}$\} is linearly independent.

Corollary

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.
Definition

A polynomial \(f(t) \) in \(P(F) \) \textit{splits over} \(F \) if there are scalars \(c, a_1, \ldots, a_n \) in \(F \) such that \(f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n) \).

Theorem (5.6)

\textit{The characteristic polynomial of any diagonalizable operator splits.}
Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of $f(t)$.

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_\lambda = \{x \in V : T(x) = \lambda x\} = N(T - I_V)$. The set E_λ is the eigenspace of T corresponding to the eigenvalue λ. The eigenspace of a square matrix A is the eigenspace of L_A.
Theorem (5.7)

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then

$$1 \leq \dim(E_\lambda) \leq m.$$
Lemma

Let T be a linear operator, and let $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \cdots, k$, let $v_i \in E_{\lambda_i}$. If

$$v_1 + v_2 + \cdots + v_k = 0,$$

then $v_i = 0$ for all i.

Theorem (5.8)

Let T be a linear operator on a vector space V, and let $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \cdots, k$, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i}. Then $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent subset of V.
Diagonalizability

Theorem (5.9)

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \cdots, \lambda_k$ be the distinct eigenvalues of T. Then

(a) T is diagonalizable if and only if the multiplicity of λ_i is equal to $\dim(E_{\lambda_i})$ for all i.

(b) If T is diagonalizable and β_i is an ordered basis for E_{λ_i}, for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.
Test for Diagonalization

Let T be a linear operator on an n-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold.

- The characteristic polynomial of T splits.
- The multiplicity of each eigenvalue λ equals $n - \text{rank}(T - \lambda I)$.
Definition

The sum of the subspaces \(W_1, \cdots, W_k \) of a vector space is the set

\[
\sum_{i=1}^{k} W_i = \{ v_1 + \cdots + v_k : v_i \in W_i \text{ for } 1 \leq i \leq k \}.
\]

Definition

A vector space \(V \) is the direct sum of subspaces \(W_1, \cdots, W_k \), denoted \(V = W_1 \oplus \cdots \oplus W_k \), if

\[
V = \sum_{i=1}^{k} W_i \text{ and } W_j \cap \sum_{i \neq j} W_i = \{0\} \text{ for each } j, 1 \leq j \leq k.
\]
Direct Sums (cont.)

Theorem (5.10)

Let W_1, \ldots, W_k be subspaces of finite-dimensional vector space V. The following are equivalent:

(a) $V = W_1 \oplus \cdots \oplus W_k$.

(b) $V = \sum_{i=1}^{k} W_i$ and for any v_1, \ldots, v_k s.t. $v_i \in W_i$ ($1 \leq i \leq k$), if $v_1 + \cdots + v_k = 0$, then $v_i = 0$ for all i.

(c) Each $v \in V$ can be uniquely written as $v = v_1 + \cdots + v_k$, where $v_i \in W_i$.

(d) If γ_i is an ordered basis for W_i ($1 \leq i \leq k$), then $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.

(e) For each $i = 1, \ldots, k$ there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.
Theorem (5.11)

A linear operator T on finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.