Math 4377/6308 Advanced Linear Algebra

 5.3 Matrix Limites and Markov Chains
Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math4377

5.3 Matrix Limites and Markov Chains

- Matrix Limits
- Existence of Limits

Matrix Limits

Definition

Let L, A_{1}, A_{2}, \cdots be $n \times p$ matrices with complex entries. The sequence A_{1}, A_{2}, \cdots is said to converge to the limit L if $\lim _{m \rightarrow \infty}\left(A_{m}\right)_{i j}=L_{i j}$ for all $1 \leq i \leq n$ and $1 \leq j \leq p$. If L is the limit of the sequence, we write $\lim _{m \rightarrow \infty} A_{m}=L$.

Theorem (5.12)

Let A_{1}, A_{2}, \cdots be a sequence of $n \times p$ matrices with complex entries that converges to L. Then for any $P \in M_{r \times n}(C)$ and $Q \in M_{p \times s}(C)$,

$$
\lim _{m \rightarrow \infty} P A_{m}=P L \text { and } \lim _{m \rightarrow \infty} A_{m} Q=L Q .
$$

Matrix Limits (cont.)

Corollary
Let $A \in M_{n \times n}(C)$ be such that $\lim _{m \rightarrow \infty} A^{m}=L$. Then for any invertible $Q \in M_{n \times n}(C)$,

$$
\lim _{m \rightarrow \infty}\left(Q A Q^{-1}\right)^{m}=Q L Q^{-1}
$$

Existence of Limits

Consider the set consisting of the complex number 1 and the interior of the unit disk: $S=\{\lambda \in \mathbb{C}:|\lambda|<1$ or $\lambda=1\}$.

Theorem (5.13)

Let A be a square matrix with complex entries. Then $\lim _{m \rightarrow \infty} A^{m}$ exists if and only if both of the following hold:
(a) Every eigenvalue of A is contained in S.
(b) If 1 is an eigenvalue of A, then the dimension of the eigenspace corresponding to 1 equals the multiplicity of 1 as an eigenvalue of A.

Existence of Limits (cont.)

> Theorem (5.14)
> Let $A \in M_{n \times n}(C) . \lim _{m \rightarrow \infty} A^{m}$ exists if
> (a) Every eigenvalue of A is contained in S.
> (b) A is diagonalizable.

