Math 4377/6308 Advanced Linear Algebra 5.3 Matrix Limites and Markov Chains

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

5.3 Matrix Limites and Markov Chains

5.3

Matrix Limits

Existence of Limits

()

< 67 ▶

Matrix Limits

Definition

Let L, A_1, A_2, \cdots be $n \times p$ matrices with complex entries. The sequence A_1, A_2, \cdots is said to *converge to the limit L* if $\lim_{m\to\infty} (A_m)_{ij} = L_{ij}$ for all $1 \le i \le n$ and $1 \le j \le p$. If L is the limit of the sequence, we write $\lim_{m\to\infty} A_m = L$.

Theorem (5.12)

Let A_1, A_2, \cdots be a sequence of $n \times p$ matrices with complex entries that converges to L. Then for any $P \in M_{r \times n}(C)$ and $Q \in M_{p \times s}(C)$,

$$\lim_{m\to\infty} PA_m = PL \ and \ \lim_{m\to\infty} A_m Q = LQ.$$

A (10) < A (10) </p>

Matrix Limits (cont.)

Corollary

Let $A \in M_{n \times n}(C)$ be such that $\lim_{m \to \infty} A^m = L$. Then for any invertible $Q \in M_{n \times n}(C)$,

5.3

$$\lim_{m\to\infty} (QAQ^{-1})^m = QLQ^{-1}.$$

3 1 4

Existence of Limits

Consider the set consisting of the complex number 1 and the interior of the unit disk: $S = \{\lambda \in \mathbb{C} : |\lambda| < 1 \text{ or } \lambda = 1\}.$

Theorem (5.13)

Let A be a square matrix with complex entries. Then $\lim_{m\to\infty} A^m$ exists if and only if both of the following hold:

- (a) Every eigenvalue of A is contained in S.
- (b) If 1 is an eigenvalue of A, then the dimension of the eigenspace corresponding to 1 equals the multiplicity of 1 as an eigenvalue of A.

Existence of Limits (cont.)

Theorem (5.14)

- Let $A \in M_{n \times n}(C)$. $\lim_{m \to \infty} A^m$ exists if
- (a) Every eigenvalue of A is contained in S.

5.3

(b) A is diagonalizable.

< ∃ > <