11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton’s method with equality constraints
- infeasible start Newton method
- implementation
Equality constrained minimization

minimize \(f(x) \)
subject to \(Ax = b \)

• \(f \) convex, twice continuously differentiable
• \(A \in \mathbb{R}^{p\times n} \) with rank \(A = p \)
• we assume \(p^* \) is finite and attained

optimality conditions: \(x^* \) is optimal iff there exists a \(\nu^* \) such that

\[
\nabla f(x^*) + A^T \nu^* = 0, \quad Ax^* = b
\]
equality constrained quadratic minimization (with $P \in \mathbf{S}_{++}^n$)

minimize \[(1/2)x^T P x + q^T x + r\]
subject to \[Ax = b\]

optimality condition:

\[
\begin{bmatrix}
P & A^T \\
A & 0 \\
\end{bmatrix}
\begin{bmatrix}
x^* \\
\nu^* \\
\end{bmatrix}
= \begin{bmatrix}
-q \\
b \\
\end{bmatrix}
\]

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

\[Ax = 0, \quad x \neq 0 \quad \implies \quad x^T P x > 0\]

- equivalent condition for nonsingularity: $P + A^TA > 0$
Eliminating equality constraints

represent solution of \(\{ x \mid Ax = b \} \) as

\[
\{ x \mid Ax = b \} = \{ Fz + \hat{x} \mid z \in \mathbb{R}^{n-p} \}
\]

- \(\hat{x} \) is (any) particular solution
- range of \(F \in \mathbb{R}^{n \times (n-p)} \) is nullspace of \(A \) (\(\text{rank} F = n - p \) and \(AF = 0 \))

reduced or eliminated problem

minimize \(f(Fz + \hat{x}) \)

- an unconstrained problem with variable \(z \in \mathbb{R}^{n-p} \)
- from solution \(z^* \), obtain \(x^* \) and \(\nu^* \) as

\[
x^* = Fz^* + \hat{x}, \quad \nu^* = -(A A^T)^{-1} A \nabla f(x^*)
\]
example: optimal allocation with resource constraint

\[
\text{minimize} \quad f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n) \\
\text{subject to} \quad x_1 + x_2 + \cdots + x_n = b
\]

eliminate \(x_n = b - x_1 - \cdots - x_{n-1} \), \text{i.e.}, choose

\[
\hat{x} = b e_n, \quad F = \begin{bmatrix} I \\ \hline 1^T \end{bmatrix} \in \mathbb{R}^{n \times (n-1)}
\]

reduced problem:

\[
\text{minimize} \quad f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \cdots - x_{n-1})
\]

(variables \(x_1, \ldots, x_{n-1} \))
Newton step

Newton step Δx_{nt} of f at feasible x is given by solution v of

$$
\begin{bmatrix}
\nabla^2 f(x) & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
v \\
w
\end{bmatrix} =
\begin{bmatrix}
-\nabla f(x) \\
0
\end{bmatrix}
$$

interpretations

- Δx_{nt} solves second order approximation (with variable v)

 minimize $\hat{f}(x + v) = f(x) + \nabla f(x)^T v + (1/2)v^T \nabla^2 f(x)v$

 subject to $A(x + v) = b$

- Δx_{nt} equations follow from linearizing optimality conditions

 $$
 \nabla f(x + v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \quad A(x + v) = b
 $$
Newton decrement

\[\lambda(x) = \left(\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt} \right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{nt} \right)^{1/2} \]

properties

- gives an estimate of \(f(x) - p^* \) using quadratic approximation \(\hat{f} \):

\[f(x) - \inf_{A_y=b} \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]

- directional derivative in Newton direction:

\[\left. \frac{d}{dt} f(x + t \Delta x_{nt}) \right|_{t=0} = -\lambda(x)^2 \]

- in general, \(\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2} \)
Newton’s method with equality constraints

\begin{align*}
\text{given} \text{ starting point } x \in \text{ dom } f \text{ with } Ax = b, \text{ tolerance } \epsilon > 0. \\
\text{repeat} \\
1. \text{ Compute the Newton step and decrement } \Delta x_{nt}, \lambda(x). \\
2. \text{ Stopping criterion. quit if } \lambda^2/2 \leq \epsilon. \\
3. \text{ Line search. Choose step size } t \text{ by backtracking line search.} \\
4. \text{ Update. } x := x + t\Delta x_{nt}.
\end{align*}

- a feasible descent method: \(x^{(k)} \) feasible and \(f(x^{(k+1)}) < f(x^{(k)}) \)
- affine invariant
Newton’s method and elimination

Newton’s method for reduced problem

\[
\text{minimize } \tilde{f}(z) = f(Fz + \hat{x})
\]

- variables \(z \in \mathbb{R}^{n-p} \)
- \(\hat{x} \) satisfies \(A\hat{x} = b; \text{ rank } F = n - p \) and \(AF = 0 \)
- Newton’s method for \(\tilde{f} \), started at \(z^{(0)} \), generates iterates \(z^{(k)} \)

Newton’s method with equality constraints

when started at \(x^{(0)} = Fz^{(0)} + \hat{x}, \) iterates are

\[
x^{(k+1)} = Fz^{(k)} + \hat{x}
\]

hence, don’t need separate convergence analysis
Newton step at infeasible points

2nd interpretation of page 11–6 extends to infeasible x (i.e., $Ax \neq b$)
linearizing optimality conditions at infeasible x (with $x \in \text{dom } f$) gives
\[
\begin{bmatrix}
\nabla^2 f(x) & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x_{nt} \\
w
\end{bmatrix}
= - \begin{bmatrix}
\nabla f(x) \\
Ax - b
\end{bmatrix}
\] \hspace{1cm} (1)

primal-dual interpretation

- write optimality condition as $r(y) = 0$, where
\[
y = (x, \nu), \quad r(y) = (\nabla f(x) + A^T \nu, Ax - b)
\]

- linearizing $r(y) = 0$ gives $r(y + \Delta y) \approx r(y) + Dr(y) \Delta y = 0$:
\[
\begin{bmatrix}
\nabla^2 f(x) & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x_{nt} \\
\Delta \nu_{nt}
\end{bmatrix}
= - \begin{bmatrix}
\nabla f(x) + A^T \nu \\
Ax - b
\end{bmatrix}
\]
same as (1) with $w = \nu + \Delta \nu_{nt}$
Infeasible start Newton method

given starting point \(x \in \text{dom} \ f, \nu \), tolerance \(\epsilon > 0 \), \(\alpha \in (0, 1/2) \), \(\beta \in (0, 1) \).

repeat
 1. Compute primal and dual Newton steps \(\Delta x_{nt}, \Delta \nu_{nt} \).
 2. Backtracking line search on \(\|r\|_2 \).
 \[t := 1. \]
 \[\text{while } \|r(x + t\Delta x_{nt}, \nu + t\Delta \nu_{nt})\|_2 > (1 - \alpha t)\|r(x, \nu)\|_2, \quad t := \beta t. \]
 3. Update. \(x := x + t\Delta x_{nt}, \nu := \nu + t\Delta \nu_{nt} \).
until \(Ax = b \) and \(\|r(x, \nu)\|_2 \leq \epsilon \).

- not a descent method: \(f(x^{(k+1)}) > f(x^{(k)}) \) is possible
- directional derivative of \(\|r(y)\|_2 \) in direction \(\Delta y = (\Delta x_{nt}, \Delta \nu_{nt}) \) is
 \[
 \frac{d}{dt} \|r(y + t\Delta y)\|_2 \bigg|_{t=0} = -\|r(y)\|_2
 \]
Solving KKT systems

\[
\begin{bmatrix}
 H & A^T \\
 A & 0
\end{bmatrix}
\begin{bmatrix}
 v \\
 w
\end{bmatrix}
= -
\begin{bmatrix}
 g \\
 h
\end{bmatrix}
\]

solution methods

- LDL^T factorization
- elimination (if \(H \) nonsingular)

\[
AH^{-1}A^Tw = h - AH^{-1}g, \quad Hv = -(g + A^Tw)
\]

- elimination with singular \(H \): write as

\[
\begin{bmatrix}
 H + A^TQA & A^T \\
 A & 0
\end{bmatrix}
\begin{bmatrix}
 v \\
 w
\end{bmatrix}
= -
\begin{bmatrix}
 g + A^TQh \\
 h
\end{bmatrix}
\]

with \(Q \succeq 0 \) for which \(H + A^TQA \succeq 0 \), and apply elimination
Equality constrained analytic centering

primal problem: minimize $-\sum_{i=1}^{n} \log x_i$ subject to $Ax = b$

dual problem: maximize $-b^T\nu + \sum_{i=1}^{n} \log(A^T\nu)_i + n$

three methods for an example with $A \in \mathbb{R}^{100 \times 500}$, different starting points

1. Newton method with equality constraints (requires $x^{(0)} \succ 0$, $Ax^{(0)} = b$)
2. Newton method applied to dual problem (requires $A^T\nu^{(0)} \succ 0$)

\[p^* - g(\nu(k)) \]

3. infeasible start Newton method (requires $x^{(0)} \succ 0$)

\[\|r(x(k), \nu(k))\|_2 \]
complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

\[
\begin{bmatrix}
\text{diag}(x)^{-2} & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
w
\end{bmatrix}
= \begin{bmatrix}
\text{diag}(x)^{-1}1 \\
0
\end{bmatrix}
\]

reduces to solving \(A \text{diag}(x)^2 A^T w = b \)

2. solve Newton system \(A \text{diag}(A^T \nu)^{-2} A^T \Delta \nu = -b + A \text{diag}(A^T \nu)^{-1}1 \)

3. use block elimination to solve KKT system

\[
\begin{bmatrix}
\text{diag}(x)^{-2} & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta \nu
\end{bmatrix}
= \begin{bmatrix}
\text{diag}(x)^{-1}1 \\
Ax - b
\end{bmatrix}
\]

reduces to solving \(A \text{diag}(x)^2 A^T w = 2Ax - b \)

conclusion: in each case, solve \(ADA^T w = h \) with \(D \) positive diagonal
Network flow optimization

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} \phi_i(x_i) \\
\text{subject to} & \quad A x = b
\end{align*}
\]

- directed graph with \(n \) arcs, \(p + 1 \) nodes
- \(x_i \): flow through arc \(i \); \(\phi_i \): cost flow function for arc \(i \) (with \(\phi_i''(x) > 0 \))
- node-incidence matrix \(\tilde{A} \in \mathbb{R}^{(p+1) \times n} \) defined as
 \[
 \tilde{A}_{ij} = \begin{cases}
 1 & \text{arc } j \text{ leaves node } i \\
 -1 & \text{arc } j \text{ enters node } i \\
 0 & \text{otherwise}
 \end{cases}
 \]
- reduced node-incidence matrix \(A \in \mathbb{R}^{p \times n} \) is \(\tilde{A} \) with last row removed
- \(b \in \mathbb{R}^p \) is (reduced) source vector
- \textbf{rank} \(A = p \) if graph is connected
KKT system

\[
\begin{bmatrix}
H & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
v \\
w
\end{bmatrix}
= -
\begin{bmatrix}
g \\
h
\end{bmatrix}
\]

- \(H = \text{diag}(\phi''_1(x_1), \ldots, \phi''_n(x_n)) \), positive diagonal

- solve via elimination:

\[
AH^{-1}A^Tw = h - AH^{-1}g, \quad Hv = -(g + A^Tw)
\]

sparsity pattern of coefficient matrix is given by graph connectivity

\[
(AH^{-1}A^T)_{ij} \neq 0 \iff (AA^T)_{ij} \neq 0 \iff \text{nodes } i \text{ and } j \text{ are connected by an arc}
\]
Analytic center of linear matrix inequality

minimize $-\log \det X$
subject to $\text{tr}(A_iX) = b_i, \quad i = 1, \ldots, p$

variable $X \in S^n$

optimality conditions

$X^* \succ 0, \quad -(X^*)^{-1} + \sum_{j=1}^{p} \nu_j^* A_i = 0, \quad \text{tr}(A_iX^*) = b_i, \quad i = 1, \ldots, p$

Newton equation at feasible X:

$X^{-1} \Delta X X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \quad \text{tr}(A_i \Delta X) = 0, \quad i = 1, \ldots, p$

- follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} - X^{-1} \Delta X X^{-1}$
- $n(n + 1)/2 + p$ variables $\Delta X, w$
solution by block elimination

- eliminate ΔX from first equation: $\Delta X = X - \sum_{j=1}^{p} w_j X A_j X$
- substitute ΔX in second equation

$$\sum_{j=1}^{p} \text{tr}(A_i X A_j X) w_j = b_i, \quad i = 1, \ldots, p$$

(2)

a dense positive definite set of linear equations with variable $w \in \mathbb{R}^{p}$

flop count (dominant terms) using Cholesky factorization $X = LL^{T}$:

- form p products $L^{T} A_j L$: $(3/2)pn^{3}$
- form $p(p + 1)/2$ inner products $\text{tr}((L^{T} A_i L)(L^{T} A_j L))$: $(1/2)p^2n^2$
- solve (2) via Cholesky factorization: $(1/3)p^3$