11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A=p$
- we assume p^{\star} is finite and attained
optimality conditions: x^{\star} is optimal iff there exists a ν^{\star} such that

$$
\nabla f\left(x^{\star}\right)+A^{T} \nu^{\star}=0, \quad A x^{\star}=b
$$

equality constrained quadratic minimization (with $P \in \mathbf{S}_{+}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & A x=b
\end{array}
$$

optimality condition:

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$
A x=0, \quad x \neq 0 \quad \Longrightarrow \quad x^{T} P x>0
$$

- equivalent condition for nonsingularity: $P+A^{T} A \succ 0$

Eliminating equality constraints

represent solution of $\{x \mid A x=b\}$ as

$$
\{x \mid A x=b\}=\left\{F z+\hat{x} \mid z \in \mathbf{R}^{n-p}\right\}
$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times(n-p)}$ is nullspace of $A(\operatorname{rank} F=n-p$ and $A F=0)$ reduced or eliminated problem

$$
\operatorname{minimize} \quad f(F z+\hat{x})
$$

- an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^{\star}, obtain x^{\star} and ν^{\star} as

$$
x^{\star}=F z^{\star}+\hat{x}, \quad \nu^{\star}=-\left(A A^{T}\right)^{-1} A \nabla f\left(x^{\star}\right)
$$

example: optimal allocation with resource constraint

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \\
\text { subject to } & x_{1}+x_{2}+\cdots+x_{n}=b
\end{array}
$$

eliminate $x_{n}=b-x_{1}-\cdots-x_{n-1}$, i.e., choose

$$
\hat{x}=b e_{n}, \quad F=\left[\begin{array}{c}
I \\
-\mathbf{1}^{T}
\end{array}\right] \in \mathbf{R}^{n \times(n-1)}
$$

reduced problem:

$$
\operatorname{minimize} f_{1}\left(x_{1}\right)+\cdots+f_{n-1}\left(x_{n-1}\right)+f_{n}\left(b-x_{1}-\cdots-x_{n-1}\right)
$$

(variables x_{1}, \ldots, x_{n-1})

Newton step

Newton step Δx_{nt} of f at feasible x is given by solution v of

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x) \\
0
\end{array}\right]
$$

interpretations

- Δx_{nt} solves second order approximation (with variable v)

$$
\begin{array}{ll}
\operatorname{minimize} & \widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+(1 / 2) v^{T} \nabla^{2} f(x) v \\
\text { subject to } & A(x+v)=b
\end{array}
$$

- Δx_{nt} equations follow from linearizing optimality conditions

$$
\nabla f(x+v)+A^{T} w \approx \nabla f(x)+\nabla^{2} f(x) v+A^{T} w=0, \quad A(x+v)=b
$$

Newton decrement

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}=\left(-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

properties

- gives an estimate of $f(x)-p^{\star}$ using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{A y=b} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- directional derivative in Newton direction:

$$
\left.\frac{d}{d t} f\left(x+t \Delta x_{\mathrm{nt}}\right)\right|_{t=0}=-\lambda(x)^{2}
$$

- in general, $\lambda(x) \neq\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with $A x=b$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement $\Delta x_{\mathrm{nt}}, \lambda(x)$.
2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

- a feasible descent method: $x^{(k)}$ feasible and $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$
- affine invariant

Newton's method and elimination

Newton's method for reduced problem

$$
\text { minimize } \tilde{f}(z)=f(F z+\hat{x})
$$

- variables $z \in \mathbf{R}^{n-p}$
- \hat{x} satisfies $A \hat{x}=b ; \operatorname{rank} F=n-p$ and $A F=0$
- Newton's method for \tilde{f}, started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints
when started at $x^{(0)}=F z^{(0)}+\hat{x}$, iterates are

$$
x^{(k+1)}=F z^{(k)}+\hat{x}
$$

hence, don't need separate convergence analysis

Newton step at infeasible points

2nd interpretation of page 11-6 extends to infeasible x (i.e., $A x \neq b$) linearizing optimality conditions at infeasible x (with $x \in \operatorname{dom} f$) gives

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \tag{1}\\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x) \\
A x-b
\end{array}\right]
$$

primal-dual interpretation

- write optimality condition as $r(y)=0$, where

$$
y=(x, \nu), \quad r(y)=\left(\nabla f(x)+A^{T} \nu, A x-b\right)
$$

- linearizing $r(y)=0$ gives $r(y+\Delta y) \approx r(y)+\operatorname{Dr}(y) \Delta y=0$:

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
\Delta \nu_{\mathrm{nt}}
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x)+A^{T} \nu \\
A x-b
\end{array}\right]
$$

same as (1) with $w=\nu+\Delta \nu_{\mathrm{nt}}$

Infeasible start Newton method

given starting point $x \in \operatorname{dom} f, \nu$, tolerance $\epsilon>0, \alpha \in(0,1 / 2), \beta \in(0,1)$. repeat

1. Compute primal and dual Newton steps $\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}$.
2. Backtracking line search on $\|r\|_{2}$.
$t:=1$.
while $\left\|r\left(x+t \Delta x_{\mathrm{nt}}, \nu+t \Delta \nu_{\mathrm{nt}}\right)\right\|_{2}>(1-\alpha t)\|r(x, \nu)\|_{2}, \quad t:=\beta t$.
3. Update. $x:=x+t \Delta x_{\mathrm{nt}}, \nu:=\nu+t \Delta \nu_{\mathrm{nt}}$.
until $A x=b$ and $\|r(x, \nu)\|_{2} \leq \epsilon$.

- not a descent method: $f\left(x^{(k+1)}\right)>f\left(x^{(k)}\right)$ is possible
- directional derivative of $\|r(y)\|_{2}$ in direction $\Delta y=\left(\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}\right)$ is

$$
\left.\frac{d}{d t}\|r(y+t \Delta y)\|_{2}\right|_{t=0}=-\|r(y)\|_{2}
$$

Solving KKT systems

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{l}
g \\
h
\end{array}\right]
$$

solution methods

- $\operatorname{LDL}^{\top}$ factorization
- elimination (if H nonsingular)

$$
A H^{-1} A^{T} w=h-A H^{-1} g, \quad H v=-\left(g+A^{T} w\right)
$$

- elimination with singular H : write as

$$
\left[\begin{array}{cc}
H+A^{T} Q A & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{c}
g+A^{T} Q h \\
h
\end{array}\right]
$$

with $Q \succeq 0$ for which $H+A^{T} Q A \succ 0$, and apply elimination

Equality constrained analytic centering

primal problem: minimize $-\sum_{i=1}^{n} \log x_{i}$ subject to $A x=b$ dual problem: maximize $-b^{T} \nu+\sum_{i=1}^{n} \log \left(A^{T} \nu\right)_{i}+n$ three methods for an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points

1. Newton method with equality constraints (requires $x^{(0)} \succ 0, A x^{(0)}=b$)

2. Newton method applied to dual problem (requires $A^{T} \nu^{(0)} \succ 0$)

3. infeasible start Newton method (requires $x^{(0)} \succ 0$)

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

$$
\left[\begin{array}{cc}
\operatorname{diag}(x)^{-2} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
w
\end{array}\right]=\left[\begin{array}{c}
\operatorname{diag}(x)^{-1} \mathbf{1} \\
0
\end{array}\right]
$$

reduces to solving $A \operatorname{diag}(x)^{2} A^{T} w=b$
2. solve Newton system $A \operatorname{diag}\left(A^{T} \nu\right)^{-2} A^{T} \Delta \nu=-b+A \operatorname{diag}\left(A^{T} \nu\right)^{-1} 1$
3. use block elimination to solve KKT system

$$
\left[\begin{array}{cc}
\operatorname{diag}(x)^{-2} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \nu
\end{array}\right]=\left[\begin{array}{c}
\operatorname{diag}(x)^{-1} \mathbf{1} \\
A x-b
\end{array}\right]
$$

reduces to solving $A \operatorname{diag}(x)^{2} A^{T} w=2 A x-b$
conclusion: in each case, solve $A D A^{T} w=h$ with D positive diagonal

Network flow optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \phi_{i}\left(x_{i}\right) \\
\text { subject to } & A x=b
\end{array}
$$

- directed graph with n arcs, $p+1$ nodes
- x_{i} : flow through arc $i ; \phi_{i}$: cost flow function for arc i (with $\left.\phi_{i}^{\prime \prime}(x)>0\right)$
- node-incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1) \times n}$ defined as

$$
\tilde{A}_{i j}=\left\{\begin{aligned}
1 & \text { arc } j \text { leaves node } i \\
-1 & \text { arc } j \text { enters node } i \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- reduced node-incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbf{R}^{p}$ is (reduced) source vector
- $\operatorname{rank} A=p$ if graph is connected

KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{l}
g \\
h
\end{array}\right]
$$

- $H=\operatorname{diag}\left(\phi_{1}^{\prime \prime}\left(x_{1}\right), \ldots, \phi_{n}^{\prime \prime}\left(x_{n}\right)\right)$, positive diagonal
- solve via elimination:

$$
A H^{-1} A^{T} w=h-A H^{-1} g, \quad H v=-\left(g+A^{T} w\right)
$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$
\begin{aligned}
\left(A H^{-1} A^{T}\right)_{i j} \neq 0 & \Longleftrightarrow\left(A A^{T}\right)_{i j} \neq 0 \\
& \Longleftrightarrow \text { nodes } i \text { and } j \text { are connected by an arc }
\end{aligned}
$$

Analytic center of linear matrix inequality

$$
\begin{array}{ll}
\operatorname{minimize} & -\log \operatorname{det} X \\
\text { subject to } & \operatorname{tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

variable $X \in \mathbf{S}^{n}$
optimality conditions
$X^{\star} \succ 0, \quad-\left(X^{\star}\right)^{-1}+\sum_{j=1}^{p} \nu_{j}^{\star} A_{i}=0, \quad \operatorname{tr}\left(A_{i} X^{\star}\right)=b_{i}, \quad i=1, \ldots, p$
Newton equation at feasible X :

$$
X^{-1} \Delta X X^{-1}+\sum_{j=1}^{p} w_{j} A_{i}=X^{-1}, \quad \operatorname{tr}\left(A_{i} \Delta X\right)=0, \quad i=1, \ldots, p
$$

- follows from linear approximation $(X+\Delta X)^{-1} \approx X^{-1}-X^{-1} \Delta X X^{-1}$
- $n(n+1) / 2+p$ variables $\Delta X, w$

solution by block elimination

- eliminate ΔX from first equation: $\Delta X=X-\sum_{j=1}^{p} w_{j} X A_{j} X$
- substitute ΔX in second equation

$$
\begin{equation*}
\sum_{j=1}^{p} \operatorname{tr}\left(A_{i} X A_{j} X\right) w_{j}=b_{i}, \quad i=1, \ldots, p \tag{2}
\end{equation*}
$$

a dense positive definite set of linear equations with variable $w \in \mathbf{R}^{p}$
flop count (dominant terms) using Cholesky factorization $X=L L^{T}$:

- form p products $L^{T} A_{j} L$: $(3 / 2) p n^{3}$
- form $p(p+1) / 2$ inner products $\operatorname{tr}\left(\left(L^{T} A_{i} L\right)\left(L^{T} A_{j} L\right)\right):(1 / 2) p^{2} n^{2}$
- solve (2) via Cholesky factorization: $(1 / 3) p^{3}$

MIT OpenCourseWare
|http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

