10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

$$
\operatorname{minimize} \quad f(x)
$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^{\star}=\inf _{x} f(x)$ is attained (and finite)
unconstrained minimization methods
- produce sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$ with

$$
f\left(x^{(k)}\right) \rightarrow p^{\star}
$$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{\star}\right)=0
$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S=\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\}$ is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{dom} f=\mathbf{R}^{n}$
- true if $f(x) \rightarrow \infty$ as $x \rightarrow \mathbf{b d} \operatorname{dom} f$
examples of differentiable functions with closed sublevel sets:

$$
f(x)=\log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)\right), \quad f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

Strong convexity and implications

f is strongly convex on S if there exists an $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I \quad \text { for all } x \in S
$$

implications

- for $x, y \in S$,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|x-y\|_{2}^{2}
$$

hence, S is bounded

- $p^{\star}>-\infty$, and for $x \in S$,

$$
f(x)-p^{\star} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
$$

useful as stopping criterion (if you know m)

Descent methods

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- other notations: $x^{+}=x+t \Delta x, x:=x+t \Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f\left(x^{+}\right)<f(x)$ implies $\nabla f(x)^{T} \Delta x<0$ (i.e., Δx is a descent direction)

General descent method.
given a starting point $x \in \operatorname{dom} f$. repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size $t>0$.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Line search types

exact line search: $t=\operatorname{argmin}_{t>0} f(x+t \Delta x)$
backtracking line search (with parameters $\alpha \in(0,1 / 2), \beta \in(0,1)$)

- starting at $t=1$, repeat $t:=\beta t$ until

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x
$$

- graphical interpretation: backtrack until $t \leq t_{0}$

Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$

```
given a starting point x\in\operatorname{dom}f.
repeat
    1. }\Deltax:=-\nablaf(x)
    2. Line search. Choose step size t via exact or backtracking line search.
    3. Update. }x:=x+t\Deltax\mathrm{ .
until stopping criterion is satisfied.
```

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice

quadratic problem in \mathbf{R}^{2}

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

nonquadratic example

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search
a problem in \mathbf{R}^{100}

'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$
\Delta x_{\text {nsd }}=\operatorname{argmin}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

interpretation: for small $v, f(x+v) \approx f(x)+\nabla f(x)^{T} v$; direction $\Delta x_{\text {nsd }}$ is unit-norm step with most negative directional derivative (unnormalized) steepest descent direction

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

satisfies $\nabla f(x)^{T} \Delta_{\text {sd }}=-\|\nabla f(x)\|_{*}^{2}$
steepest descent method

- general descent method with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties similar to gradient descent

examples

- Euclidean norm: $\Delta x_{\mathrm{sd}}=-\nabla f(x)$
- quadratic norm $\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}\left(P \in \mathbf{S}_{++}^{n}\right): \Delta x_{\mathrm{sd}}=-P^{-1} \nabla f(x)$
- ℓ_{1}-norm: $\Delta x_{\text {sd }}=-\left(\partial f(x) / \partial x_{i}\right) e_{i}$, where $\left|\partial f(x) / \partial x_{i}\right|=\|\nabla f(x)\|_{\infty}$ unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_{1}-norm:

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x}=P^{1 / 2} x$
shows choice of P has strong effect on speed of convergence

Newton step

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

interpretations

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

dashed lines are contour lines of f; ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to x^{\star}

properties

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- directional derivative in the Newton direction: $\nabla f(x)^{T} \Delta x_{\mathrm{nt}}=-\lambda(x)^{2}$
- affine invariant (unlike $\|\nabla f(x)\|_{2}$)

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.
affine invariant, i.e., independent of linear changes of coordinates:
Newton iterates for $\tilde{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are

$$
y^{(k)}=T^{-1} x^{(k)}
$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^{2} f$ is Lipschitz continuous on S, with constant $L>0$:

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

(L measures how well f can be approximated by a quadratic function)
outline: there exist constants $\eta \in\left(0, m^{2} / L\right), \gamma>0$ such that

- if $\|\nabla f(x)\|_{2} \geq \eta$, then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma$
- if $\|\nabla f(x)\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

damped Newton phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^{\star}>-\infty$, this phase ends after at most $\left(f\left(x^{(0)}\right)-p^{\star}\right) / \gamma$ iterations
quadratically convergent phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$
- all iterations use step size $t=1$
- $\|\nabla f(x)\|_{2}$ converges to zero quadratically: if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{l}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
$$

conclusion: number of iterations until $f(x)-p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)

Examples

example in \mathbf{R}^{2} (page 10-9)

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbf{R}^{100} (page 10-10)

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact I.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbf{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$.
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, \ldots)
- bound is not affinely invariant, although Newton's method is
convergence analysis via self-concordance (Nesterov and Nemirovski)
- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- convex $f: \mathbf{R} \rightarrow \mathbf{R}$ is self-concordant if $\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}$ for all $x \in \operatorname{dom} f$
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is self-concordant if $g(t)=f(x+t v)$ is self-concordant for all $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$

examples on R

- linear and quadratic functions
- negative logarithm $f(x)=-\log x$
- negative entropy plus negative logarithm: $f(x)=x \log x-\log x$
affine invariance: if $f: \mathbf{R} \rightarrow \mathbf{R}$ is s.c., then $\tilde{f}(y)=f(a y+b)$ is s.c.:

$$
\tilde{f}^{\prime \prime \prime}(y)=a^{3} f^{\prime \prime \prime}(a y+b), \quad \tilde{f}^{\prime \prime}(y)=a^{2} f^{\prime \prime}(a y+b)
$$

Self-concordant calculus

properties

- preserved under positive scaling $\alpha \geq 1$, and sum
- preserved under composition with affine function
- if g is convex with $\operatorname{dom} g=\mathbf{R}_{++}$and $\left|g^{\prime \prime \prime}(x)\right| \leq 3 g^{\prime \prime}(x) / x$ then

$$
f(x)=\log (-g(x))-\log x
$$

is self-concordant
examples: properties can be used to show that the following are s.c.

- $f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)$ on $\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$
- $f(X)=-\log \operatorname{det} X$ on \mathbf{S}_{++}^{n}
- $f(x)=-\log \left(y^{2}-x^{T} x\right)$ on $\left\{(x, y) \mid\|x\|_{2}<y\right\}$

Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in(0,1 / 4], \gamma>0$ such that

- if $\lambda(x)>\eta$, then

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- if $\lambda(x) \leq \eta$, then

$$
2 \lambda\left(x^{(k+1)}\right) \leq\left(2 \lambda\left(x^{(k)}\right)\right)^{2}
$$

(η and γ only depend on backtracking parameters α, β)
complexity bound: number of Newton iterations bounded by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}(1 / \epsilon)
$$

for $\alpha=0.1, \beta=0.8, \epsilon=10^{-10}$, bound evaluates to $375\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$
numerical example: 150 randomly generated instances of

$$
\operatorname{minimize} \quad f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

○: $m=100, n=50$
$\square: m=1000, n=500$
$\diamond: m=1000, n=50$

- number of iterations much smaller than $375\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$
- bound of the form $c\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$ with smaller c (empirically) valid

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=g
$$

where $H=\nabla^{2} f(x), g=-\nabla f(x)$
via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost $(1 / 3) n^{3}$ flops for unstructured system
- cost $\ll(1 / 3) n^{3}$ if H sparse, banded
example of dense Newton system with structure

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\psi_{0}(A x+b), \quad H=D+A^{T} H_{0} A
$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_{i}^{\prime \prime}\left(x_{i}\right) ; H_{0}=\nabla^{2} \psi_{0}(A x+b)$
method 1: form H, solve via dense Cholesky factorization: (cost $(1 / 3) n^{3}$) method 2 (page 9-15): factor $H_{0}=L_{0} L_{0}^{T}$; write Newton system as

$$
D \Delta x+A^{T} L_{0} w=-g, \quad L_{0}^{T} A \Delta x-w=0
$$

eliminate Δx from first equation; compute w and Δx from

$$
\left(I+L_{0}^{T} A D^{-1} A^{T} L_{0}\right) w=-L_{0}^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L_{0} w
$$

cost: $2 p^{2} n$ (dominated by computation of $L_{0}^{T} A D^{-1} A^{T} L_{0}$)

MIT OpenCourseWare
|http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

