Polynomial Interpolation

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math6371

크

イロト イヨト イヨト イヨト

Jiwen He, University of Houston

Monomial interpolation: Data (1, 1), (2, 3), (4, 3)

Monomial interpolation:

$$p_2(x) = c_0 + c_1 x + c_2 x^2$$

The interpolating conditions in matrix form read

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

The MATLAB commands:

$$A = [1 1 1; 1 2 4; 1 4 16]; y = [1; 3; 3]; c = A \setminus y;$$

yields

$$c_0 = -7/3, c_1 = 4, c_2 = -2/3.$$

- 4 目 ト - 4 日 ト - 4 日 ト

Lagrange interpolation: Data (1, 1), (2, 3), (4, 3)

Lagrange interpolation:

$$p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

where $y_0 = 1$, $y_1 = 3$, $y_2 = 3$ and

$$L_0(x) = \frac{1}{3}(x-2)(x-4), L_1(x) = -\frac{1}{2}(x-1)(x-4), L_2(x) = \frac{1}{6}(x-1)(x-2)$$

Despite the different form, this is precisely the same quadratic interpolant as the one we found before

$$p_2(x) = (-2x^2 + 12x - 7)/3.$$

Jiwen He, University of Houston

・ロト ・回ト ・ヨト ・ヨト

Newton interpolation: Data (1, 1), (2, 3), (4, 3)

Newton interpolation:

$$p_{2}(x) = f[x_{0}] + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1})$$

where $x_{0} = 1$, $x_{1} = 2$, $x_{2} = 4$, $f[x_{0}] = 1$, $f[x_{1}] = 3$, $f[x_{2}] = 3$, and
 $3 - 1$
 $3 - 3$
 $0 - 2$
 2

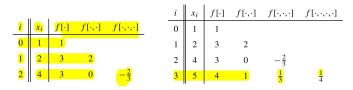
$$f[x_0, x_1] = \frac{3-1}{2-1} = 2, f[x_1, x_2] = \frac{3-3}{4-2} = 0, f[x_0, x_1, x_2] = \frac{0-2}{4-1} = -\frac{2}{3},$$

yielding

イロト イヨト イヨト イヨト

Newton interpolation: Additional Data Point (5, 4)

Note that we need only add another row to the divided difference table:

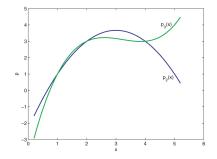


For p_3 we have the expression

$$p_{3}(x) = p_{2}(x) + f[x_{0}, x_{1}, x_{2}, x_{3}](x - x_{0})(x - x_{1})(x - x_{2})$$

= 1 + (x - 1) $\left(2 - \frac{2}{3}(x - 2)\right) + \frac{1}{4}(x - 1)(x - 2)(x - 4)$
= 1 + (x - 1) $\left(2 + (x - 2)\left(-\frac{2}{3} + \frac{1}{4}(x - 4)\right)\right)$.

Newton interpolation: Additional Data Point



 Obtaining a higher degree approximation is simply a matter of adding a term.

$$p_3(x) = p_2(x) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

• Note that p_2 predicts a rather different value for x = 5 than the additional datum $f(x_3)$ later imposes, which explains the significant difference between the two interpolating curves.

屮

Interpolating also Derivative Values

Give the five data values

ti	$f(t_i)$	$f'(t_i)$	$f''(t_i)$
<mark>8.3</mark>	17.564921	3.116256	0.120482
<mark>8.6</mark>	18.505155	3.151762	

Set up the divided difference table

$$\begin{split} (x_0, x_1, x_2, x_3, x_4) &= \left(\underbrace{8.3, 8.3, 8.3}_{m_0=2}, \underbrace{8.6, 8.6}_{m_1=1}\right), \\ f[x_0, x_1] &= \frac{f'(t_0)}{1!} = f'(8.3), \quad f[x_1, x_2] = \frac{f'(t_0)}{1!}, \\ f[x_0, x_1, x_2] &= \frac{f''(t_0)}{2!} = \frac{f'(8.3)}{2}, \quad f[x_3, x_4] = \frac{f'(t_1)}{1!} = f'(8.6), \end{split}$$

x _i	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
8.3	17.564921				
8.3	17.564921	3.116256			
8.3	17.564921	3.116256	0.060241		
8.6	18.505155	3.130780	0.048413	-0.039426	
<mark>8.6</mark>	18.505155	<u>3.151762</u>	0.069400	0.071756	0.370604

The resulting quartic interpolant is

$$p_4(x) = \sum_{k=0}^{4} f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j)$$

= 17.564921 + 3.116256(x - 8.3) + 0.060241(x - 8.3)^2
- 0.039426(x - 8.3)^3 + 0.370604(x - 8.3)^3(x - 8.6).

- 4 回 ト - 4 回 ト

Algorithm: Lagrange Interpolation

Algorithm: Lagrange Polynomial Interpolation. 1. Construction: Given data $\{(x_i, y_i)\}_{i=0}^n$, compute barycentric weights $w_j = 1/\prod_{i \neq j} (x_j - x_i)$, and also the quantities $w_j y_j$, for j = 0, 1, ..., n. 2. Evaluation: Given an evaluation point x not equal to one of the data points $\{x_i\}_{i=0}^n$, compute $p(x) = \frac{\sum_{j=0}^n \frac{w_j y_j}{(x - x_i)}}{\sum_{j=0}^n \frac{w_j}{(x - x_i)}}$.

呥

・ロト ・聞 ト ・ ヨト ・ ヨト …

Algorithm: Newton Interpolation

Algorithm: Polynomial Interpolation in Newton Form.

1. Construction: Given data $\{(x_i, y_i)\}_{i=0}^n$, where the abscissae are not necessarily distinct,

for
$$j = 0, 1, ..., n$$

for $l = 0, 1, ..., j$
 $\gamma_{j,l} = \begin{cases} \frac{\gamma_{j,l-1} - \gamma_{j-1,l-1}}{x_j - x_{j-l}} & \text{if } x_j \neq x_{j-l}, \\ \frac{f^{(l)}(x_j)}{l!} & \text{otherwise.} \end{cases}$

2. *Evaluation*: Given an evaluation point *x*,

$$p = \gamma_{n,n}$$

for $j = n - 1, n - 2, \dots, 0$,
$$p = p (x - x_j) + \gamma_{j,j}$$

Jiwen He, University of Houston

イロト イポト イヨト イヨト

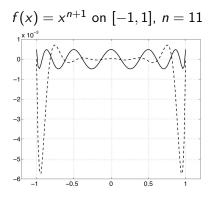
3

Basis name	$\phi_j(x)$	Construction cost	Evaluation cost	Selling feature
Monomial	x ^j	$\frac{2}{3}n^{3}$	2 <i>n</i>	simple
Lagrange	$L_j(x)$	n^2	5n	$c_j = y_j$ most stable
Newton	$\prod_{i=0}^{j-1} (x - x_i)$	$\frac{3}{2}n^2$	2 <i>n</i>	adaptive

æ

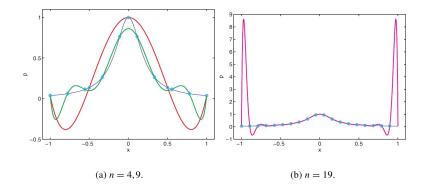
イロン イヨン イヨン イヨン

Runge's Phenomenon: Error of Interpolation



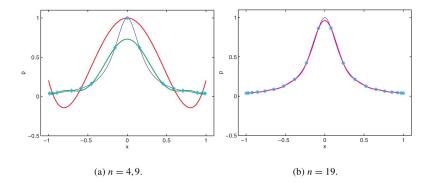
- Using n + 1 = 12 Chebyshev points (solid line) and equidistant points (dashed line)
- The interpolation error for $f(x) = x^{n+1}$ becomes $f(x) p_n(x) = \psi_n(x)$, because $\frac{f^{(n+1)}}{(n+1)!} = 1$
- Equidistant interpolation can give rise to convergence difficulties when the number of interpolation points becomes large.

Runge Function: $f(x) = \frac{1}{1+25x^2}$ with Equidistant Points



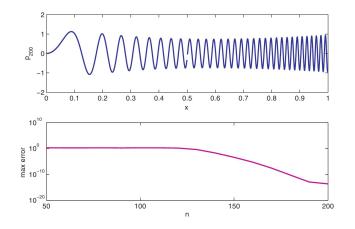
- Calculating $\frac{f^{(n+1)}}{(n+1)!}$ shows the growth in the error term near the interval ends
- The results do not improve as the degree of the polynomial is increased.

Runge Function: $f(x) = \frac{1}{1+25x^2}$ with Chebyshev Points



- The improvement over the interpolation at equidistant points is remarkable!
- The Chebyshev points concentrate more near the interval ends, which is precisely where $\frac{f^{(n+1)}}{(n+1)!}$ gets large.

$f(x) = e^{3x} \sin(200x^2)/(1+20x^2)$ with Chebyshev Points



• As *n* is increased further the error eventually goes down, and rather fast: the error then looks like $O(q^{-n})$ for some q > 1. This is called spectral accuracy.

Jiwen He, University of Houston

14