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Monomial interpolation: Data (1, 1), (2, 3), (4, 3)

Monomial interpolation:

p2(x) = c0 + c1x + c2x
2

The interpolating conditions in matrix form read1 1 1
1 2 4
1 4 16

c0

c1

c2

 =

1
3
3


The MATLAB commands:

A = [1 1 1; 1 2 4; 1 4 16]; y = [1; 3; 3]; c = A\y ;

yields
c0 = −7/3, c1 = 4, c2 = −2/3.
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Lagrange interpolation: Data (1, 1), (2, 3), (4, 3)

Lagrange interpolation:

p2(x) = y0L0(x) + y1L1(x) + y2L2(x)

where y0 = 1, y1 = 3, y2 = 3 and

L0(x) =
1

3
(x−2)(x−4), L1(x) = −1

2
(x−1)(x−4), L2(x) =

1

6
(x−1)(x−2)

Despite the different form, this is precisely the same quadratic
interpolant as the one we found before

p2(x) = (−2x2 + 12x − 7)/3.
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Newton interpolation: Data (1, 1), (2, 3), (4, 3)

Newton interpolation:

p2(x) = f [x0] + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1)

where x0 = 1, x1 = 2, x2 = 4, f [x0] = 1, f [x1] = 3, f [x2] = 3, and

f [x0, x1] =
3− 1

2− 1
= 2, f [x1, x2] =

3− 3

4− 2
= 0, f [x0, x1, x2] =

0− 2

4− 1
= −2

3
,

yielding

p2(x) = 1 + 2(x − 1)− 2

3
(x − 1)(x − 2)

= 1 + (x − 1)

(
2− 2

3
(x − 2)

)
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Newton interpolation: Additional Data Point (5, 4)

Note that we need only add another row to the divided difference
table:

For p3 we have the expression

p3(x) = p2(x) + f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2)

= 1 + (x − 1)

(
2− 2

3
(x − 2)

)
+

1

4
(x − 1)(x − 2)(x − 4)

= 1 + (x − 1)

(
2 + (x − 2)

(
−2

3
+

1

4
(x − 4)

))
.
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Newton interpolation: Additional Data Point

Obtaining a higher degree approximation is simply a matter of
adding a term.

p3(x) = p2(x) + f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2)

Note that p2 predicts a rather different value for x = 5 than
the additional datum f (x3) later imposes, which explains the
significant difference between the two interpolating curves.
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Interpolating also Derivative Values

Give the five data values

Set up the divided difference
table

The resulting quartic interpolant
is
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Algorithm: Lagrange Interpolation
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Algorithm: Newton Interpolation
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Algorithms Comparison
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Runge’s Phenomenon: Error of Interpolation

f (x) = xn+1 on [−1, 1], n = 11

Using n + 1 = 12 Chebyshev
points (solid line) and
equidistant points (dashed
line)

The interpolation error for
f (x) = xn+1 becomes
f (x)− pn(x) = ψn(x),

because f (n+1)

(n+1)! = 1

Equidistant interpolation
can give rise to convergence
difficulties when the number
of interpolation points
becomes large.
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Runge Function: f (x) = 1
1+25x2 with Equidistant Points

Calculating f (n+1)

(n+1)! shows the growth in the error term near the
interval ends

The results do not improve as the degree of the polynomial is
increased.
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Runge Function: f (x) = 1
1+25x2 with Chebyshev Points

The improvement over the interpolation at equidistant points
is remarkable!

The Chebyshev points concentrate more near the interval

ends, which is precisely where f (n+1)

(n+1)! gets large.
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f (x) = e3x sin(200x2)/(1 + 20x2) with Chebyshev Points

As n is increased further the error eventually goes down, and
rather fast: the error then looks like O(q−n) for some q > 1.
This is called spectral accuracy.
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