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Monomial interpolation: Data (1, 1), (2, 3), (4, 3)

Monomial interpolation:
p2(x) = co + c1x + cx?

The interpolating conditions in matrix form read

11 1 o) 1
1 2 4 5] == 3
1 4 16 ()] 3

The MATLAB commands:
A=1[111;124;1416];y =[1;3;3];c = A\y;

yields
Co = —7/3,C1 = 4, C = —2/3.
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Lagrange interpolation: Data (1, 1), (2, 3), (4, 3)

Lagrange interpolation:
p2(x) = yoLo(x) + y1L1(x) + y2L2(x)
where yp =1, y3 =3, y» = 3 and
1 1 1
Lo(x) = 3(x=2)(x—4), L1(x) = =5 (x=1)(x—4), L2(x) = £ (x~1)(x~2)

Despite the different form, this is precisely the same quadratic
interpolant as the one we found before

pa(x) = (—=2x% + 12x — 7)/3.
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Newton interpolation: Data (1, 1), (2, 3), (4, 3)

Newton interpolation:
p2(x) = flxo] + f[xo0, x1](x — x0) + f[x0, x1, x2](x — x0)(Xx — x1)

where xg = 1, x1 =2, xo =4, f[xo] =1, f[x1] =3, f[x2] = 3, and

-1 3-3 0-2 2
flxo, x1] = ;j =2,fx1, %] = 2_o7 0, fxo, x1, %] = 2—-1 3
yielding
N — . 2
I S S () = 14 20— 1) — S(x — 1)(x —2)
123 2 2
2043 o -2 _1+(X_1)(2_3(X_2)>
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Newton interpolation: Additional Data Point (5, 4)

Note that we need only add another row to the divided difference

table:
ix | e A S
t||X|f[] Lol flLs- of 1] 1
0 1 I 1] 2 3 2
D || o =— 243 o 2
204 3 0 =3 35| 4 1 ) 1

For p3 we have the expression

p3(x) = p2(x) + flxo, x1, X2, x3](x — x0)(x — x1)(x — x2)

1

14 (- 1) (2 50-2)) + 4 x - Dx - 2= 8

:1+(x—1)<2+(x—2)(
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Newton interpolation: Additional Data Point

@ Obtaining a higher degree approximation is simply a matter of
adding a term.

p3(x) = p2(x) + flxo, x1, X2, x3](x — x0)(x — x1)(x — x2)

@ Note that py predicts a rather different value for x = 5 than
the additional datum f(x3) later imposes, which explains the [l!l
significant difference between the two interpolating curves.
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Interpolating also Derivative Values

Give the five data values

Xi Sl fls0] Sl Al i |
ti f@) f(@) f() 8.3 | 17564921
8.3 | 17.564921 3.116256
8.3 | 17.564921 | 3.116256 | 0.120482 N
8.6 | 18.505155 | 3.151762 8.6 | 18.505155 3.130780 0.048413 -0.039426

8.6 | 18.505155 3.151762 0.069400 0.071756  0.370604

Set up the divided difference The resulting quartic interpolant

table
IS
(x0,x1,%2,x3,x4) = | 8.3,8.3,8.3,8.6,8.6 |, 4 k—1
ey pa) =Y flxo,-. el [ [ —x))

k=0 j=0
= 17.564921 +3.116256(x — 8.3) + 0.060241(x — 8.3)
—0.039426(x — 8.3)° 4 0.370604(x — 8.3)(x — 8.6).

L

fixo e =L = g3, ey = L0
) _ f'(8.3)
20 0 2

flxo,x1,x2] = f'(8.6),

flx3, x4l = # =
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Algorithm: Lagrange Interpolation

_: Lagrange Polynomial Interpolation.

1. Construction: Given data {(x;,y;)}"_,, compute barycentric weights w; =
I/H(Xj — X;), and also the quantities w;y;, for j =0,1,...n.

i#j
2. Evaluation: Given an evaluation point x not equal to one of the data points {x;}7_,
compute
no Wpyj
Jj=0 (x—x;)
px)= = g >
ZJ:U G=x;))
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Algorithm: Newton Interpolation

Algorithm: Polynomial Interpolation in Newton Form.

1. Construction: Given data {(x,-,y,-)};'zo, where the abscissae are not necessarily dis-
tinct,

for j=0,1,...,n
TOTA=1()N |
Vid—1=Vj—li=1 .o )
= = if xj #x;g,
L= 0 )
# otherwise.

2. Evaluation: Given an evaluation point x,

P ="VYnn
forj=n—1,n-2,...,0,

p=p&x—x)+vj,
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Algorithms Comparison

Basis Construction | Evaluation Selling
name ¢j(x) cost cost feature
Monomial x/ %n3 2n simple
ci=1yj

Lagrange Lj(x) n? S5n d 4

most stable

J—1
Newton l—[ (x —x;) %nz 2n adaptive
i=0
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Runge’'s Phenomenon: Error of Interpolation

@ Using n+ 1 = 12 Chebyshev
points (solid line) and

f(x)=x""on [-1,1], n=11 equidistant points (dashed

R : — line)

0 \f @ The interpolation error for

a4 f(x) = x"*1 becomes

IS 3 7 = palx) = Ua(x)

o because £ G = 1

—af = o Equidistant interpolation

& | can give rise to convergence
J difficulties when the number

-1 -0.5 0 0.5 1

of interpolation points
becomes large. [lll
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Runge Function: f(x) = 75557 with Equidistant Points

(a)n=4,9. (b) n = 19.

. n+1 .
o Calculating % shows the growth in the error term near the
interval ends

@ The results do not improve as the degree of the polynomial is [l]l
increased.
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Runge Function: f(x) = 1+215 > with Chebyshev Points

-0.5

0.5 1

(a)n =4,9. (b)n =19.

@ The improvement over the interpolation at equidistant points
is remarkable!

@ The Chebyshev points concentrate more near the interval [lll
ends, which is precisely where % gets large.

Jiwen He, University of Houston



f(x) = e*sin(200x?)/(1 + 20x?) with Chebyshev Points

max error

L I
50 100 150 200

@ As n is increased further the error eventually goes down, and
rather fast: the error then looks like O(q~") for some g > 1. [lll
This is called spectral accuracy.
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