Welcome Back...

Questions?
4. Let \(k \in \mathbb{N} \) and suppose \(X \subseteq H^k((0,1), R) \) is closed, nonempty and convex in \(X \) whenever \(\alpha \geq 0 \) and \(u \in X \). Let \(l : X \to [0, \infty) \) be continuous (with respect to the natural norm on \(H^k \)) and satisfy \(l(\alpha u) = \alpha l(u) \) for all \(\alpha \geq 0 \) and \(u \in X \). Prove that if \(l(p) \neq 0 \) for all \(p \in X \) such that \(p \) is a nonzero polynomial of degree at most \(k - 1 \), then there exists \(L > 0 \) such that
\[
\|u\|_{2,0,(0,1)} \leq L \left[\|u^{(k)}\|_{2,(0,1)} + l(u) \right]
\]
for all \(u \in X \). Explain how this result generalizes the Poincaré inequality.

\(X \) is a cone.

Note that a subspace is a cone, but a cone need not be a subspace.

\(\text{e.g.} \)

- Take \(k=1 \). Set \(X = H^1((0,1), \mathbb{R}) \).

\(\text{Let } l(u) = \left| \int_0^1 u(x) \, dx \right| \).

\(\text{Note: } l(1) = 1. \quad \text{Also, } l(\alpha u) = \alpha l(u) \quad \forall \alpha \neq 0. \)

\(\therefore \exists L > 0 \quad \text{such that} \)
\[
\|u\|_{2,1,(0,1)} \leq L \left[\left(\int_0^1 (u'(x))^2 \, dx \right)^{1/2} + l(u) \right]
\]
\(\rightarrow \)

\(H^1 \text{ norm of } u \)
\[\kappa = 1 \quad \text{or} \quad X = \left\{ u \in H^1((0,1), \mathbb{R}) \mid \int_0^1 u(x) \, dx = 0 \right\} \]

Take \(\lambda(u) \equiv 0 \).

Note: There are no nonzero constant functions in \(X \).

\[\therefore \lambda(p) \neq 0 \text{ for a nonzero constant} \]

functions in \(X \).

So, \(\exists L > 0 \) such that

\[\|u\|_{L^2((0,1))} \leq L \left(\int_0^1 (u'(x))^2 \, dx \right)^{1/2} \]

\[\therefore \text{this is a norm on } X \]

equivalent to \(\|u\|_{L^2((0,1))} \).
\[X = \{ u \in H'(0,1), \mathbb{R} \mid u(0) = u(1) = 0 \} \]

\[H_0^1(0,1), \mathbb{R} \]

Define \(\lambda(u) = 0 \) \(\forall \ u \in X \).

Note: There are no nonzero constant functions in \(X \).

\(\Rightarrow \lambda(p) \neq 0 \) \(\forall \) nonzero constant functions in \(X \).

\[\exists L > 0 \quad \|u\|_{2,1,(0,1)} \leq L \left(\int_0^1 u'(x)^2 \, dx \right)^{1/2} \]

i.e., \(\|u\|_{2,1,(0,1)} \) is a norm on \(H_0^1(0,1), \mathbb{R} \) that is equivalent to the standard \(H' \) norm.

Poincare ineq.
The proof can be done by contradiction.

Spec \(L > 0 \) and
\[
\|u\|_{2,K,(0,1)} \leq L \left(\|u^{(k)}\|_{2,(0,1)} + \|v\| \right)
\]

\(u \in X \). Then \(\forall \, n \in \mathbb{N} \)

\(\exists \, u_n \in X \)

\[
\|u_n\|_{2,K,(0,1)} > \sqrt{\|u^{(k)}\|_{2,(0,1)} + \alpha \|u_n\|_{2,(0,1)}}
\]

Define
\[
\alpha = \frac{1}{\|u_n\|_{2,K,(0,1)}}
\]

\[
\alpha \|u_n\|_{2,K,(0,1)} > \sqrt{\|u^{(k)}\|_{2,(0,1)} + \alpha \|u_n\|_{2,(0,1)}}
\]

\[
L = \|v\|_{2,K,(0,1)} > \sqrt{\|V^{(k)}\|_{2,(0,1)} + \alpha \|v\|_{2,(0,1)}}
\]

\[\text{Case } k=1: \{V_n\} \text{ is a bad seq. in } H^1((0,1), \mathbb{R}).\]

Then \(\exists \) a subseq. \(\{V_{n_j}\} \) that converges in \(C([0,1],\mathbb{R}) \) wrt \(\|\cdot\|_{0,\infty} \).

Let \(v \in C([0,1],\mathbb{R}) \) s.t. \(V_{n_j} \rightarrow v \) wrt \(\|\cdot\|_{0,\infty} \).

Also, \(\|V_{n_j}\|_{2,(0,1)} \rightarrow 0 \) as \(j \rightarrow \infty \).

Use this to prove \(v \) is a constant and (from \(\circ \) and the continuity of \(\lambda \)) \(\lambda(v) = 0 \).

And \(v \) is nonzero since \(\|v\|_{2,(0,1)} = 1 \).

Contradiction! So \(k=1 \) is true.
Define $X = \{ u \in H^1((0,1), R) \mid \int_0^1 u(x) dx = 0 \}$. Let $f \in L^2((0,1), R)$ and $p \in C^1([0,1], R)$ such that $p > 0$. Give a necessary and sufficient condition on f to guarantee there exists a unique function $u \in H^2((0,1), R) \cap X$ such that

$$
\begin{align*}
\frac{d}{dx} (p(x) u'(x)) &= f(x), \quad 0 < x < 1 \\
u'(0) = u'(1) &= 0
\end{align*}
$$

Then show there exists a real number $K > 0$ dependent upon p, but independent of f, such that

$$
\|u\|_{2,2,(0,1)} \leq K \|f\|_{2,(0,1)}.
$$

Finally, show that if we define a sequence of functions $\{u_n\}_{n=1}^{\infty} \subseteq H^2((0,1), R) \cap X$ such that

$$
\begin{align*}
\frac{d}{dx} (p(x) u'_n(x)) - \frac{1}{x} u_n(x) &= f(x), \quad 0 < x < 1 \\
u'_n(0) = u'_n(1) &= 0
\end{align*}
$$

for each $n \in N$, then $u_n \rightarrow u$ as $n \rightarrow \infty$.

Get a weak formulation on X. Show $f \in X$ solving.

Continue...
Today: We will prove the Spectral Theorem for Compact Operators

Recall Riesz' Lemma:
Let X be a n.l.s. and space $M \subseteq X$ is a proper closed subspace. If $0 < \theta < 1$ then $\exists x_\theta \in X$ such that $\|x_\theta\| = 1$ and $\text{dist}(x_\theta, M) \geq \theta$.

Theorem (Riesz-Schauder):
Space X is a nls over F and $T \in \text{COM}(X)$. Then

(i) $0 \in \sigma(T)$ if X is infinite dim.

(ii) if $\lambda \in F \setminus \{0\}$ then either λ is an eigenvalue or $\lambda \in \rho(T)$.

(iii) T has at most countably many eigenvalues, and if there are infinitely many eigenvalues, 0 is the only limit point.

(iv) if $\lambda \in \sigma(T)$ is nonzero (i.e., λ is an eigenvalue from (ii)) then $\text{dim}(E_\lambda) < \infty$.

i.e., X has finite multiplicity.

Note that any uncountable set of real or complex numbers must have a nonzero accumulation point.
pf: As I said... (i) is done.

Let's show (ii). Assume \(\dim(X) = \infty \).

We will show \(\emptyset \in \sigma(T) \).

By way of contradiction, spec \(\emptyset \in \rho(T) \).

Let's build a sequence. Take \(x_1 \in X \ni \|x_1\| = 1 \). Set \(M_1 = \text{span}\{x_1\} \).

\[\therefore \text{by Riesz lemma } \exists \ x_2 \in X \ni \|x_2\| = 1 \text{ and } \text{dist}(x_2, M_1) > \frac{1}{2} . \]

Take \(M_2 = \text{span}\{x_1, x_2\} \) and \(\exists \ x_3 \in X \ni \|x_3\| = 1 \text{ and } \text{dist}(x_3, M_2) > \frac{1}{2} . \)

Continue to create \(\{x_n\} \subseteq X \ni \|x_n\| = 1 \text{ and } \text{dist}(x_n, \text{span}\{x_1, \ldots, x_{n-1}\}) > \frac{1}{2} . \)

Then \(\{x_n\} \) is an infinite sequence with no conv. subseq.

Define \(y_n = T^{-1}(x_n) \) for \(n \in \mathbb{N} \).

Note that since \(\emptyset \in \rho(T) \) we have \(\{y_n\} \) is a bdd seq. in \(X \).

Recall: \(T \in \text{COM}(X) \). :\[
\{T(y_n)\} \quad \text{must have a conv. subseq. i.e. } \{x_n\} \text{ must have a conv. subseq.}
\]

\[\therefore (i) \text{ is true.} \]
let's do (iii) + (iv) together.

Spe \{x_n\} \subseteq X is a seq of
L.I. eig. vectors with assoc. Nonzero
eig. vals \{\lambda_n\} \Rightarrow \lambda_n \to \lambda.

Lemma: Any uncountable set of real or complex numbers must have a
nonzero accumulation point.

If \{S\} be the set. Define

1. \(S_1 = \{x \in S \mid |x| < 1\} \).
2. \(S_2 = \{x \in S \mid 1 < |x| < \frac{1}{2}\} \).

For \(k > 2 \)

\(S_k = \{x \in S \mid \frac{1}{k+1} < |x| < \frac{1}{k}\} \)

Note: \(S = \emptyset \cup S_1 \cup S_2 \cup \ldots \)

countable union.

* at least one \(S_k \) is
uncountable. If \(k > 1 \)

Then \(S_k \) is \(\text{bld} + \text{infinite} \)
and \(\text{dist}(S_k, 0) \geq \frac{1}{k} \).

\(\Rightarrow \) \(S_k \) has a nonzero
accum. pt. \(\Rightarrow \) \(S \) has also.

Suppose \(k = 1 \). Then \(S_1 \) is
uncountable. Define

\(A_k = \{x \in S_1 \mid k \leq |x| < k+1\} \).

Then \(S_1 = U A_k \)

\(\Rightarrow \) at least one \(A_k \)’s
is uncountable.

Note: Each \(A_k \) is bld
and \(\text{dist}(A_k, 0) \geq 1 \).

Done. #
Claim: $\lambda = 0$.

Set $M_k = \text{span} \{x_1, x_2, \ldots, x_k\}$. Then

$\lambda_n \neq M_n$, e $\|y_n\| = 1$ and

$$\text{dist}(y_n, M_{n-1}) > \frac{1}{2}.$$

If $n > m$

$$\lambda_n^{-1}T(y_n) - \lambda_m^{-1}T(y_m) = y_n + (-y_m - \lambda_m^{-1}(\lambda_m I - T)(y_m)) + \lambda_m^{-1}(\lambda_m I - T)y_m$$

$$= y_n - z \text{ for some } z \in M_{n-1}$$

$$\therefore \|\lambda_n^{-1}T(y_n) - \lambda_m^{-1}T(y_m)\| > \frac{1}{2}.$$

Recall $\lambda_n \rightarrow \lambda$.

Now suppose $\lambda \neq 0$. Recall, $T \in \text{Com}(X)$ and \{\tilde{y}_k\} is add.

Then $\{T(y_k)\}$ has a conv. subseq. Contradiction to \bigstar.

$\therefore \lambda = 0. \Rightarrow (iii) + (iv)$ hold.
Final remark: If $\lambda \in \mathbb{F}$ and $x \in X$ s.t. $\|x\|=1$ and $T(x) = \lambda x$

$\Rightarrow \|T(x)\| = |\lambda| \|x\| = |\lambda|$

$\Rightarrow |\lambda| \leq \|T\|_0.$