The graph of the second derivative of \(f \) is shown below.

\[y = f''(x) \]

1. Give the number of critical numbers of \(f' \).
 A. 3 B. 4 C. 5 D. 6 E. 7

2. Give the number of values of \(x \) where \(f' \) has an inflection point.
 A. 0 B. 1 C. 2 D. 3 E. 4

3. Give the number of values of \(x \) where \(f' \) has a local minimum.
 A. 0 B. 1 C. 2 D. 3 E. 4

4. Give the number of intervals where \(f' \) is increasing?
 A. 0 B. 1 C. 2 D. 3 E. 4

5. Give the number of intervals where \(f' \) is decreasing?
 A. 0 B. 1 C. 2 D. 3 E. 4
6. Give the number of critical numbers of \(f \).

 A. 3 B. 4 C. 5 D. 6 E. 7

7. Give the number of values of \(x \) where \(f' \) has an inflection point.

 A. 0 B. 1 C. 2 D. 3 E. 4

8. Give the number of values of \(x \) where \(f'' \) has a local minimum. (\(f'' \) changes from decreasing to increasing)

 A. 0 B. 1 C. 2 D. 3 E. 4

9. Give the number of values of \(x \) where \(f'' \) has a local maximum. (\(f'' \) changes from increasing to decreasing)

 A. 0 B. 1 C. 2 D. 3 E. 4

10. Give the number of values of \(x \) where \(f''' \) is zero or undefined.

 A. 0 B. 1 C. 2 D. 3 E. 4

11. Give the number of intervals where \(f''' \) is positive.

 A. 0 B. 1 C. 2 D. 3 E. 4