Math 1431 - 15825

Jeff Morgan
jmorgan@math.uh.edu
651 PGH
Office Hours: 11-noon MWF

Course Homepage
http://www.math.uh.edu/~jmorgan/Math1431

Reminders:
- Test 1, Practice Test 1, Quiz 1 are all available online.
- EMCF01 was due this morning at 9am.
- EMCF02 is due on Friday morning at 9am.
- Homework 1 is posted and due next Wednesday.
- Written Quiz 1 will be given in lab/workshop on Friday.
- Purchase your Access Code NOW from the UH Bookstore, and input it on CourseWare at http://www.easa.uh.edu. Pick up your Popper Forms by the end of next week.

http://www.math.uh.edu/~jmorgan/Math1431

Math 1431 - 15825
Jeff Morgan - jmorgan@math.uh.edu

Read the Syllabus
Access all Online Quizzes, Practice Test 1, Test 1, answer sheets for EMCF's and the Discussion Board on CourseWare at http://www.easa.uh.edu. All practice tests count as online quizzes, and all online quizzes and online tests expire at 11:59pm on the stated date.

Note: The test dates listed below are subject to change.

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 28</td>
<td>Practice Test 1</td>
<td>Test 1, and Online Quizzes are Open</td>
<td>Name, Test 1 is online, and from HW 1 - 2 answers</td>
<td>EMCF1 Due Online or Back Quiz at Lab/Workshop</td>
<td>September 1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: There are only 2 attempts for online Test 1.

Limits - Basic Ideas and Review

The limit of \(f(x) \) as \(x \) approaches \(a \) is given by the value (if it exists) we expect from \(f(x) \) as \(x \) approaches \(a \).

\[
\lim_{x \to a} f(x) = L
\]

http://www.math.uh.edu/~jmorgan/Math1431
The limit of $f(x)$ as x approaches a is L if and only if $f(x)$ can be made arbitrarily close to L by making $x \neq a$ sufficiently close to a.

The limit of $f(x)$ as x approaches a is L if and only if

$$\lim_{x \to a} f(x) = L.$$

One-Sided Limits, in words...

The limit of $f(x)$ as x approaches a from the left is L if and only if $f(x)$ can be made arbitrarily close to L by making $x < a$ sufficiently close to a.

The limit of $f(x)$ as x approaches a from the right is L if and only if $f(x)$ can be made arbitrarily close to L by making $x > a$ sufficiently close to a.

The limit of $f(x)$ as x approaches a from the left is L, equivalent to the notation $\lim_{x \to a^-} f(x) = L$.

The limit of $f(x)$ as x approaches a from the right is L, equivalent to the notation $\lim_{x \to a^+} f(x) = L$.

The Fundamental Relationship Between Left Hand Limits, Right Hand Limits, and Limits

$$\lim_{x \to a^-} f(x) = L$$

if and only if

$$\lim_{x \to a^+} f(x) = L$$

if and only if

$$\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$
Suppose \(g(x) = \begin{cases}
-x + 2, & x < 1 \\
3, & x = 1 \\
3x - 2, & x > 1
\end{cases} \). Find \(\lim_{x \to 0^-} g(x) \) and \(\lim_{x \to 0^+} g(x) \).

\[
\lim_{x \to 0^-} g(x) = \lim_{x \to 0^+} g(x) = 2
\]

Intuitive Limits From Formulas...

\[
\lim_{x \to 2} \left(2x^2 - 1\right) = 7
\]

\[
\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2} = \lim_{x \to 2} \frac{(x-2)(x-1)}{(x-2)} = \lim_{x \to 2} (x-1) = 1
\]

\[
\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2} = \lim_{x \to 2} \frac{(x-2)(x-1)}{x - 2} = \lim_{x \to 2} (x-1) = 1
\]
\[\lim_{x \to 2} f(x) \quad \text{where} \quad f(x) = \begin{cases} 2x - 1 & x < 2 \\ 6 - x^2 & x \geq 2 \end{cases} \]

\[\lim_{x \to 2^-} f(x) = \lim_{x \to 2} (2x - 1) = 3 \]

\[\lim_{x \to 2^+} f(x) = \lim_{x \to 2} (6 - x^2) = 2 \]

\[(a-b)(a+b) = a^2 - b^2 \]

\[\lim_{x \to 1} \frac{x^2 - 1}{x-1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)} \]

\[= \lim_{x \to 1} (x+1) \]

\[= 1 \]

\[\lim_{x \to 0} \frac{2}{2x} = \frac{1}{2} \]

\[\text{our limit} \]

\[\text{What does it mean to say that } x \text{ is within } .01 \text{ of } 12 \text{ but not equal to } 12 \]

\[|x-12| < .01 \text{ and } x \neq 12 \]

\[0 < |x-12| < .01 \]

"x is within .01 of 12, but not equal to 12"

\[0 < |x-7| < .001 \]

"x is within .001 of 7 but not equal to 7"
What does it mean to say that $f(x)$ is within ε of L?

$\lim_{x \to a} f(x) = L$

$\varepsilon > 0$

aproaches a if and only if $f(x)$ can be made arbitrarily close to L by making $x \neq a$ sufficiently close to a.

Let $\varepsilon > 0$. Then there is a value $\delta > 0$ so that $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$.

"$f(x)$ is within ε of L"

What does it mean to say that $(x$ is within δ of $c)$ but not equal to c?

$0 < |x - c| < \delta$

"x is within δ of c but not equal to c"

Let's use this language to discuss limits...

Give the largest δ that works with $\varepsilon = 0.1$ for the limit

$\lim_{x \to 1} (1 - 2x) = 3$

$f(x) = 1 - 2x$

$L = 3$, $a = 1$

$\varepsilon = 0.1$

Let $\varepsilon > 0$. Then there is a value $\delta > 0$ so that $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$.

When $0 < |x - 1| < \delta$

$0 < |x + 1| < 0.5$

Use $\delta = 0.5$.
Prove that \(\lim_{x \to 1} (1-2x) = 3 \).

Let \(\epsilon > 0 \). Then let \(\delta = \frac{\epsilon}{2} \). If \(|x-1| < \delta \), then

\[
|1-2(x+1)| = 2|x+1| < 2\cdot\frac{\epsilon}{2} = \epsilon.
\]

Then

\[
|1-(2x+3)| < \epsilon \Rightarrow \lim_{x \to 1} (1-2x) = 3.
\]