Math 1431 - 15825

Jeff Morgan jmorgan@math.uh.edu 651 PGH Office Hours: 11-noon MWF

Course Homepage

http://www.math.uh.edu/~jmorgan/Math1431

Reminders:

- Test 1, Practice Test 1, Quiz 1 are all available online.
- EMCF01 was due this morning at 9am.
- EMCF02 is due on Friday morning at 9am.
- Homework 1 is posted and due next Wednesday.
- Written Quiz 1 will be given in lab/workshop on Friday.

tingurl.com/math1431 @morgancalculus

The limit of f(x) as x approaches a is L if and only if f(x) can be made arbitrarily close to L by making $x \neq a$ sufficiently close to a.

Otherwise, we say the limit does not exist!" The limit of f(x) as x approaches a is L if and only if " and we write d is equivalent to the notation $\lim_{x \to a} f(x) = L$. $\lim_{x \to a} f(x) = L$ http://www.math.uh.edu/~jmorgan/Math1431

The Fundamental Relationship Between Left Hand Limits, Right Hand Limits, and Limits

$$\lim_{x \to a} f(x) = L$$
if and only if
$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = L$$

http://www.math.uh.edu/~jmorgan/Math1431

One Sided Limits, in words...

The limit of f(x) as x approaches a from the left is L if and only if f(x) can be made arbitrarily close to L by making x < a sufficiently close to a.

The limit of f(x) as x approaches a from the left is L, is equivalent to the notation $\lim_{x\to a^{-}} f(x) = L$.

The limit of f(x) as x approaches a from the right is L if and only if f(x) can be made arbitrarily close to L by making x > a sufficiently close to a.

The limit of f(x) as x approaches a from the left is L, is equivalent to the notation $\lim_{x \to a} f(x) = L$.

http://www.math.uh.edu/~jmorgan/Math1431

http://www.math.uh.edu/~jmorgan/Math1431

http://www.math.uh.edu/~jmorgan/Math1431

Intuitive Limits From Formulas...

$$\lim_{x \to -2} (2x^2 - 1) = 7$$

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x - 1)}{(x - 2)}$$

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2} = \lim_{x \to 2} (x - 2)$$

$$\lim_{x \to 2} \frac{(x - 2)(x - 1)}{(x - 2)} = \lim_{x \to 2} (x - 1) = 1$$

