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Notes

* Poppers start next Monday! Acgess Codes must be purchased and entered at
www.casa.uh.edu by next Monday.¢— rz:81 AWM

e Purchase your Popper Forms and Access Code from the Bookstore in the
University Center

e Homework 1 is due today in recitation/workshop.

e EMCF03 was due at 9am yesterday, and EMCF04 is due on Friday at 9am.
Homework 2 will be posted today.

e Online Quizzes are available, and Tﬂ 1 and Practice Test 1 are due
tonight at 11:59pm. - e
e There is a Written Quiz in lab/workshop on Friday.

———

Theorem
R
%%

Let p(x) be a polynomial and let ¢ be a real number.
\— Then lim p(x)= p(c).
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Note: We have learned that whenever f(x) is a
polynomial or rational function, and ¢ _is in the
domain of f, then
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i.e. we can evaluate the limit by evaluating the
function.




What does this say about the graphs
of polynomial and rational
functions? |\_
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This property is known as
continuity.

" -chT"oM & Ccoulinnius
A X:Ch

What does it mean to say that
J(x) is continuous at x =c ?
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Geometrically? \

In terms of limits?
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Polynomials and Rational Functions are
Continuous Everywhere They are Defined
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Terminology

S (x) is discontinuous at x =c¢
if and only if f(x)
is not continuous at x = c.
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What are the Basic Types of Discontinuity?
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Removable Discontinuity at x = c.
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Infinite Discontinuity at x = ¢
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Example: Discuss the
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continuity of the following functions.
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