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Notes

Olarl next Monday! Access Codes must be purchased and entered at

www.casa.uh.edu by next Monday.

* Purchase your Popper Forms and Access Code from the Bookstore in the
University Center —_—

+ Homework 11s due today in recitation/workshop.
+ EMCF03 was due at 9am yesterday, and EMCF04 is due on Friday at 9am.
Homework 2 will be posted today.

« Online Quizzes are available, and Test 1 and Practice Test 1 are due
tonight at 11:59pm.

« There is a Written Quiz in lab/workshop on Friday.
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Let p(x) be a polynomial and let ¢ be a real number.

Then lLim p(x)= p(c).
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Theorem

Let p(x) and g(x) be polynomials, and let ¢

be a real numbers. Then
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undefined, if p(c)i 0 and
If p(c) dﬁc) =0 then more work is required to

determine the limit.
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Note: We have learned that whenever f(x) isa
polynomial or rational function, and ¢ is in the
~ domain of /, then

lim /£ (x) = £ (c)
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i.e. we can evaluate the limit by evaluating the
function.
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What does this say about the graphs
of polynomial and rational
functions? o
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This property is known as ' N
continuity. "

What does it mean to say that
f(x) is continuous at x=¢ ?

Geometrically?

In terms of limits?
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Polynomials and Rational Functions are
Continuous Everywhere They are Defined
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Terminology

f(x) is discontinuous at x = ¢
ifand only if f(x)
is not continuous at x = c.
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What are the Basic Types of Discontinuity?
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Removable Discontinuity at x = c.
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Jump Discontinuity at x = c.
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Infinite Discontinuity at x = ¢
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Example: Discuss the continuity of the following functions.

G(x)= 3% —2x -7
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Glx)= 3 -2y -7
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We can show this using limits by first noting that the function breaks
up into 3 lines. So the function is certainly continuous everywhere
cxcept possibly x=-2 and x=2. Let's check these.
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Putting all of this together, we find that H(x) is continuous on
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Note: The function is continuous both to the left of -2 and to the right of
-2, because the function is defined in terms of polynomials on each side
(regardless of values of 4 and B). So, we get the values of 4 and B by
making sure the function is continuous at x=-2.
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