Math 1431

Jeff Morgan
Jjmorgan@math.uh.edu
651 PGH
Office Hours: 11:00-Noon MWF
v

http://www math.uh.edu/~jmorgan/Math1431

tinyurl.com/math1431
@morgancalculus

Access Codes were due at 12:01am today.
EMCF05 was due this morning at 9:00am.
Homework 2 is due Today in lab/workshop.
Poppers start today.

Quiz 1 expires tonight at 11:59 pm.
Video Help was posted for Sections 2.5 and 2.6.

We will finish Chapter 2 today, and(start Section 3.1)
We will skip the Extreme Value Theorem in Section 2.6, and talk
about it later when we need it.
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Recall: |lim =1 What does this mean?
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The Intermediate Value Theorem
(common sense for continuous functions)

If f(x) is a continuous function on the interval [a,b]
and K is a value between f(a) and f(b), then there is a
value ¢ between a and b so that /(c) = K.
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Show there is a value of x between

1 and 3 sothat —3x>+2x* =@

(a good place to use the Intermediate Value Theorem)
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Corollary to the Intermediate Value Theorem: Suppose a function f is
continuous on an interval / and f(x) isnot 0 atany value x in /.
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If f(c)>0atsome point ¢ in /, then f(x)>0 atevery x in I.

If f(c) <0at some point ¢ in /, then f(x) <0 atevery x in /.
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Solve the inequality Lﬂ- 1 <0
x—-1 x-2

(a good place to use the Intermediate Value Theorem)
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‘* An Introduction to Derivatives: How can we approximate
the slope of the tangent line to the graph atx =a ?
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We can approximate the tangent line to
the graph at x =& by using a secant line.
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We can improve this approximation by making 4 smaller.

The approximation will continue to improve as we make / even smaller.
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If the limit exists, then we can find
the slope of the graph at x = a by taking a limit.
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The slope of the tangent
line at x =a is called
the derivative of f°

at x =g, and it is denoted - -C(A\
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Example: Give the slope of the tangent line to
the graph of fy):éu - atx=1.
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