Math 1431

Jeff Morgan jmorgan@math.uh.edu 651 PGH Office Hours: 11:00-Noon MWF

http://www.math.uh.edu/~jmorgan/Math1431 tinyurl.com/math1431 @morgancalculus

Access Codes were due at 12:01am today.

EMCF05 was due this morning at 9:00am.

Homework 2 is due Today in lab/workshop.

Poppers start today.

Quiz 1 expires tonight at 11:59 pm.

Video Help was posted for Sections 2.5 and 2.6.

We will finish Chapter 2 today, and start Section 3.1.

We will skip the Extreme Value Theorem in Section 2.6, and talk about it later when we need it.

The Intermediate Value Theorem (common sense for continuous functions)

If f(x) is a continuous function on the interval [a,b] and K is a value between f(a) and f(b), then there is a value c between a and b so that f(c) = K.

Show there is a value of x between

1 and 3 so that $-3x^3 + 2x^4 = 7$

(a good place to use the Intermediate Value Theorem)

Define $f(x) = -3x^3 + 2x^4$ Note that f(x) is continuous on [1,3] b/c it is a polynomials. Also, f(1) = -1 and $f(3) = -81 + 2 \cdot 81 = 81$

note that 7 lies bother -1 and 81. .. From the I.V.Thum
there exists at least one value of
x bother 1 and 3 so that f(x) = 7.

Corollary to the Intermediate Value Theorem: Suppose a function f is continuous on an interval I and f(x) is not 0 at any value x in I.

If f(c) > 0 at some point c in I, then f(x) > 0 at every x in I.

If f(c) < 0 at some point c in I, then f(x) < 0 at every x in I.

An Introduction to Derivatives: How can we approximate the slope of the tangent line to the graph at x = a?

Example: Give the slope of the tangent line to the graph of
$$f(x) = 4x - x^2$$
 at $x = 1$.

$$\frac{d^2}{dx^2} = \frac{d^2}{dx^2} = \frac{d$$