There is a **Written Quiz** in lab today.

Online Quiz 2 is due on Monday at 11:59pm.

An **EMCF** is due on Monday.

Homework 3 is due on Monday.

Help videos are posted for Sections 3.1 and 3.2.

We are in Chapter 3!

www.math.uh.edu/~jmorgan/Math1431

tinyurl.com/math1431
@morgancalculus

The Derivative: Overview...

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

prime of f

Note: \(f'(x)\) is the slope of the tangent line at \(x = a\).

\[
\frac{d}{dx}f(x) = f'(x)
\]

(provided \(f'(a) \neq 0\))

Popper P03

Do not write 1 or 1 or 4

How is the derivative related to continuity?

If \(f(x) \) is differentiable at \(x = a \), then \(f(x) \) is continuous at \(x = a \).

But, the converse is not true.

\(f(x) = |x| \)

is continuous.

\(f(x) = |x| \) does not have a derivative at \(x = 0 \).

How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at:

1. Points of discontinuity.
2. Points where the graph has a corner.
3. Points where the graph has a cusp.
4. Points where the graph has a vertical tangent.

\[f(x) = x^\frac{1}{3} \]

\[\text{at } x = 0 \]

\[f(x) = x^\frac{1}{3} \]

\[\text{at } x = 0 \]

The function \(f(x) \) is graphed below. Determine the values of \(x \) where \(f \) is differentiable.

\[f \text{ is differentiable on } (\infty, -4) \cup (-4, -1) \cup (-1, 0) \cup (0, 2) \cup (2, \infty) \]

An Exercise from 3.1

21. The graph of a function \(f \) is shown in the figure.

(a) For which numbers \(c \) does \(f \) fail to be continuous? For each discontinuity, state whether it is a removable discontinuity, a jump discontinuity, or neither.

(b) At which numbers \(c \) is \(f \) continuous but not differentiable?

\[x = -1, \text{ removable} \]

\[x = 1, \text{ jump} \]

\[x = 0 \]

\[x = 3 \]
Identify the values of x where the slope of the tangent line is **positive**.

$(-\infty, a) \cup (c, \infty)$

$y = f(x)$

Identify the values of x where the slope of the tangent line is **negative**.

$\left(a, c\right)$

$\alpha < x < \beta$

$y = f(x)$

Identify the values of x where the slope of the tangent line is **zero**.

$x = a$ and $x = c$

$y = f(x)$

Algebraic Properties of the Derivative

1. Derivatives of sums, differences, scalar multiples, products and quotients.

2. Power rule.
Sums, Differences and Scalar Multiples

If \(f \) and \(g \) are differentiable and \(c \) is a scalar, then \(f + g \), \(fg \) and \(cf \) are differentiable. Furthermore,

1. \[\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x) \]
2. \[\frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x) \]
3. \[\frac{d}{dx}(c \cdot f(x)) = c \cdot \frac{d}{dx}f(x) \]

Examples:

Give the derivative of \(f(x) = x^2 \).

\[
\begin{align*}
 f'(x) &= \frac{d}{dx} x^2 = \frac{d}{dx} (x \cdot x) \\
 &= x \cdot \frac{d}{dx} x + x \cdot \frac{d}{dx} x \\
 &= x \cdot 1 + x \cdot 1 \\
 &= 2x
\end{align*}
\]

Give the derivative of \(R(x) = x^3 + x \).

\[
\begin{align*}
 R'(x) &= \frac{d}{dx} (x^3 + x) = \frac{d}{dx} x^3 + \frac{d}{dx} x \\
 &= \frac{d}{dx} (x^3 \cdot x) + 1 \\
 &= x^3 \frac{d}{dx} x + x \cdot \frac{d}{dx} x^2 + 1 \\
 &= x^3 \cdot 1 + x \cdot 2x + 1 \\
 &= 3x^2 + 1
\end{align*}
\]

Products and Quotients

If \(f \) and \(g \) are differentiable then \(f \cdot g \) and \(\frac{f}{g} \) are differentiable. Furthermore,

4. \[\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \frac{d}{dx}g(x) + g(x) \frac{d}{dx}f(x) \]
5. \[\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = g(x) f'(x) - f(x) g'(x) \]
\[g(x)^2 \]

Quotient rule

Popper P03

1. We found the derivative of \(f(x) = x^2 \) on the previous page. Give the slope of the tangent line to the graph of \(f \) at the point where \(x = -2 \).

2. We found the derivative of \(f(x) = x^2 \) on the previous page. Give the slope of the normal line to the graph of \(f \) at the point where \(x = -2 \).

3. We found the derivative of \(R(x) = x^3 + x \) on the previous page. Give the value of \(R'(1) \).
Power Rule

\[
\frac{d}{dx} x^n = nx^{n-1}, \quad n \neq 0
\]

\[
\begin{align*}
\frac{d}{dx} x^2 &= 2x \\
\frac{d}{dx} x^3 &= 3x^2 \\
\frac{d}{dx} x^4 &= 4x^3 \\
\frac{d}{dx} x^5 &= 5x^4
\end{align*}
\]

Examples:

Give the derivative of \(f(x) = x^4 + 2x^3 \).

\[
f'(x) = \frac{d}{dx} (x^4 + 2x^3) = \frac{d}{dx} x^4 + \frac{d}{dx} 2x^3
\]

\[
= 4x^3 + 2 \cdot \frac{d}{dx} x^3 = 4x^3 + 2 \cdot 3x^2 = 4x^3 + 6x^2
\]

Give the derivative of \(g(x) = (\sqrt{x} + 1)(3x^2 - 2x + 2) \).

\[
g'(x) = \frac{d}{dx} (u(x)v(x)) = u(x)v'(x) + v(x)u'(x)
\]

\[
= (\sqrt{x} + 1) \left[3 \cdot 3x - 2 \right] + (3x^2 - 2x + 2) \frac{d}{dx} (\sqrt{x} + 1)
\]

\[
= (\sqrt{x} + 1) \left[3 \cdot 3x - 2 \right] + (3x^2 - 2x + 2) \left(\frac{1}{2\sqrt{x}} \right)
\]

Example:

Give the derivative of \(H(x) = 3x^3 - 5x^2 - 6x + 3 \).

\[
H'(x) = 9x^2 - 10x - 6
\]

Example:

Give the derivative of \(g(x) = \frac{2}{\sqrt{x}} - \frac{3}{x} + x^2 - 1 \).

\[
g'(x) = 2 \cdot (-\frac{1}{2}) x^{-\frac{3}{2}} - 3 \cdot (-1) x^{-2} + 2x - 0
\]

\[
g'(x) = x^{-\frac{3}{2}} + 3x^{-2} + 2x - 0
\]
Example: Give the derivative of \(f(x) = \frac{2x-3}{x^2+1} \).

See the video