Math 1431 Jeff Morgan

- There is a Written Quiz in lab today.
- Online Quiz 2 is due on Monday at 11:59pm.
- An **EMCF** is due on Monday.
- **Homework 3** is due on Monday.
- **Help videos** are posted for Sections 3.1 and 3.2.
- We are in Chapter 3!

www.math.uh.edu/~jmorgan/Math1431 tinyurl.com/math1431 @morgancalculus

How is the derivative related to continuity? If f(x) is differentiable at

The function f(x) is graphed below. Determine the values of x where f is differentiable. Not differentiable t X=-1,

How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at:

- 1. Points of discontinuity.
- 2. Points where the graph has a corner.
- 3. Points where the graph has a cusp. $\downarrow (x) = x$
- 4. Points where the graph has a vertical tangent.

$$f(x) = x^{1/3} \quad \text{at}$$

$$x = 0$$

Identify the values of x where the slope of the tangent line is **positive**.

Identify the values of x where the slope of the tangent line is **negative**.

Identify the values of x where the slope of the tangent line is **zero**.

Algebraic Properties of the Derivative

- 1. Derivatives of sums, differences, scalar multiples, products and quotients.
- 2. Power rule.

Sums, Differences and Scalar Multiples

If f and g are differentiable and c is a scalar, then f + g, f-g and cfare differentiable. Furthermore,

$$\int_{-\infty}^{\infty} \frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

2.
$$\frac{d}{dx}(f(x)-g(x))=\frac{d}{dx}f(x)-\frac{d}{dx}g(x)$$

$$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$$

Products and Quotients

If f and g are differentiable then $f \cdot g$ and f/g are differentiable. Furthermore,

4.
$$\frac{d}{dx}(f(x)\cdot g(x)) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$$

$$f(x) = \frac{d}{dx}(f(x)) - f(x)g'(x)$$

4.
$$\frac{1}{dx}(f(x) \cdot g(x)) = f(x) \frac{1}{dx}g(x) + g(x) \frac{1}{dx}f(x)$$

5. $\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$

Examples:

Give the derivative of $f(x) = x^2$.

$$f'(x) = \int_{0}^{1} x^{2} = \int_{0}^{1} (x \cdot x)$$

$$= x \cdot \int_{0}^{1} x + x \cdot \int_{0}^{1} x$$

$$= x \cdot 1 + x \cdot 1$$

$$= 2x$$

Give the derivative of $R(x) = x^3 + x$.

Popper P03

- 1. We found the derivative of $f(x) = x^2$ on the previous page. Give the slope of the **tangent** line to the graph of f at the point where x = -2.
- 2. We found the derivative of $f(x) = x^2$ on the previous page. Give the slope of the **normal** line to the graph of f at the point where x = -2.
- 3. We found the derivative of $R(x) = x^3 + x$ on the previous page. Give the value of R'(1).

Examples:
Give the derivative of
$$f(x) = x^4 + 2x^3$$
.
 $f'(x) = \frac{1}{4x}(x^4 + 2x^3) = \frac{1}{4x}x^4 + \frac{1}{4x}2x^3$
 $= 4x^3 + 2\frac{1}{4x}x^3$
 $= 4x^3 + 2 \cdot 3x^2 = 4x^3 + 6x^2$
Give the derivative of $g(x) = (\sqrt{x} + 1)(3x^3 - 2x + 2)$.
 $\frac{1}{4x}(x) = (x + 1) \cdot \frac{1}{4x}(3x^3 - 2x + 2) + (3x^3 - 2x + 2)\frac{1}{4x}(5x + 1)$
 $= (x + 1)[3 \cdot 3x^2 - 2] + (3x^3 - 2x + 2)(\frac{1}{2(x} + 0))$
 $= (x + 1)[3 \cdot 3x^2 - 2] + (3x^3 - 2x + 2)(\frac{1}{2(x} + 0))$

Example:

Give the derivative of $H(x) = 3x^3 - 5x^2 - 6x + 3$.

$$H'(x) = 9x^2 - 10x - 6$$

Give the derivative of
$$g(x) = \frac{2}{\sqrt{x}} - \frac{3}{x} + x^2 - 1$$
.

$$g(x) = 2 \times \frac{3}{x} - 3 \times \frac{1}{x} + x^2 - 1$$

$$g'(x) = 2 \cdot (-\frac{1}{2}) \times \frac{3}{x} - 3 \cdot (-1) \times \frac{3}{x} + 2 \times -0$$

Popper P03

Example: Give the derivative of $f(x) = \frac{2x-3}{x^2+1}$.