
Info

- EMCFs are due every MWF morning.
- There is a quiz in lab Friday.
- There is no homework due on Monday.
- There will be an **EMCF** due on Monday.
- There is an online quiz due Monday.
- Practice Test 2 is posted.
- The slides and video are posted from last night's review.
- You should be registered for Test 2.

Differentials and Newton's Method

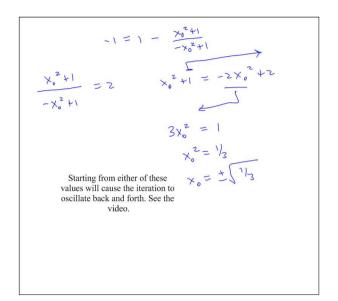
Section 3.9

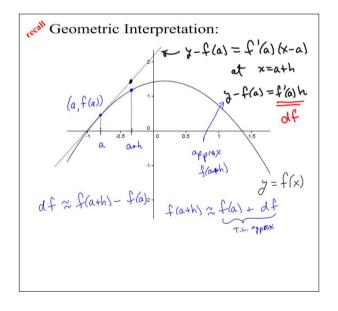
(tangent line approximation)

```
Example: Do one iteration of Newton's method from a guess of x_0 = 2 to approximate a solution to x^3 + 2x - 3 = 0. Then compute further Newton iterates using a calculator or other computing device.

f(x) = x^4 + 2x - 3
f'(x) = 17
f'(x) = 4x^3 + 2
x_1 = 2 - \frac{f(x)}{f'(x)} = 2 - \frac{17}{34}
x_2 = 2 - \frac{f(x)}{f'(x)} = 2 - \frac{17}{34}
x_3 = 2 - \frac{f(x)}{f'(x)} = 2 - \frac{17}{34}
x_4 = 2 - \frac{f(x)}{f'(x)} = 2 - \frac{17}{34}
x_5 = 2 - \frac{17}{34}
x_6 = 2 - \frac{17}{34}
x_7 = 2 - \frac{17}{34}
x_8 = 2
```

Example: Newton's method can go horribly wrong IF the initial guess is not sufficiently close to the actual solution. We can see this by exploring the equation
$$\frac{10x}{x^2+1} = 0$$
See the video. An initial guess of 0.6 will cause things to go very bad!!

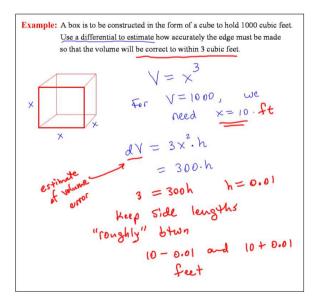

$$f(x) = \frac{10 \times x}{x^2+1}$$

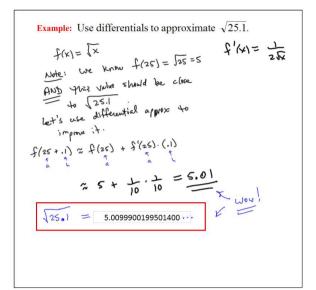

$$f'(x) = \frac{(x^2+1) \cdot 10 - 10 \cdot 2x}{(x^2+1)^2} = \frac{-10 \times x^2 + 10}{(x^2+1)^2}$$
Guess $x_0 \leftarrow \text{causes} \in \text{Cycling}$.

$$x_1 = x_0 - \frac{10x_0}{(x_0^2+1)^2} = x_0 - \frac{10x_0}{(x_0^2+1)^2}$$

$$x_1 = x_0 - \frac{10x_0}{(x_0^2+1)^2} = x_0 - \frac{10x_0}{(x_0^2+1)^2}$$
Use are not industed in $x_0 = 0$.

The differential of
$$f$$
 at a with increment h is given by $df = f'(a)h$





Differentials Can Be Used To Approximate Function Values

The differential of f at a with increment h is given by df = f'(a)h

Using the approximation $df \approx f(a+h) - f(a)$, the equation above becomes $f(a+h) \approx f(a) + \underline{f'(a)h}$ (this is a tangent line approximation)

