Info

EMCFs are due every MWF morning.
There is a quiz in lab Friday.

There is no homework due on Monday.
There will be an EMCF due on Monday.
There is an online quiz due Monday.
Practice Test 2 is posted.

The slides and video are posted from last
night's review.

e You should be registered for Test 2.

& Differentials and Newton’s
Method

Section 3.9

(tangent line approximation)

+ Newton’s Method - Formula
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Example: Do one iteration of Newton's method from a guess of Eo = ZSto
approximate a solution to X'+ 2¢—3=0 Then compute
further Newton iterates using a calculator or other computing

device.
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Example: Newton's method can go horribly wrong IF the intial 40
guess is not sufficiently close to the actual solution. We ey = ﬁl’__,
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The differential of / at a with increment 4

<@e"\\ Geometric Interpretation:
is given by df = f'(a)h
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Differentials Can Be Used To
Approximate Function Values

The differential of / at a with increment A
is given by df = f'(a)h
P

Using the approximation df «~ f{a +h) - fla),
the cquation above becomes
fla+h)= fla)+ [ (a)h

(this is a tangent line approximation)

Example: Use differentials to approximate

Sey= Ix

hes  Lbe ¥ $lagy= 35 =S

N b

anD sy wshe shaeld e el

= o 251 -

s we abfetich oppme 52
Yo

S5+ D % Q(z:} ¥ 3‘(’%\‘ (;\

=6

o
ﬂf*J’\o ="

§ el = 5.0099900199501400 - - ~

\

25.1

V<

$'ta=

Example: A box is to be constructed in the form of a cube to hold 1000 cubic feet.

Use a differential to estimate how accurately the edge must be made
so that the volume will be comrect to within 3 cubic feet.
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