Info

- There is no Homework due next Monday.
- There are EMCFs due every MWF.
- There is an Online Quiz due Monday.
- Take care of Practice Test 2!
- Schedule and take Test 2!

P12

1. Use Newton’s method with a guess of 2 to approximate a solution to
\[x^3 - \sin(x) - 8x = 0. \]

2. Use differentials to approximate \(\sin(61^\circ) \). Hint: Convert \(61^\circ \) to radians, and note that this value is close to \(\pi / 3 \).

The Mean Value Theorem

Section 4.1

Question: How many values are there between -1 and 3
where the tangent line is parallel to the secant line connecting \((-1, f(-1)) \) and \((3, f(3))\)?
Question: How many values are there between 0 and 6 where the tangent line is parallel to the secant line connecting \((0, f(0))\) and \((6, f(6))\)?

General Question: Are there values between \(a\) and \(b\) where the tangent line is parallel to the secant line connecting \((a, f(a))\) and \((b, f(b))\)?

P12

3. How many values are there between 0 and 6 where the tangent line is parallel to the secant line connecting \((0, f(0))\) and \((6, f(6))\)?

Mean Value Theorem: If \(f\) is continuous on \([a, b]\) and differentiable on \((a, b)\), then there is at least one value \(c\) between \(a\) and \(b\) so that

\[
f(b) - f(a) = f'(c)(b - a)\]

Special Case of MVT: Assume \(f'(a) = f'(b) = 0\). Then there is at least one value \(c\) between \(a\) and \(b\) so that \(f'(c) = 0\).
Example: **Verify the mean value theorem for** \(f(x) = 3x - x^2 \) **on the interval** \([-1, 3]\).

\[
\text{We need to find }\quad -1 < c < 3 \quad \text{so that} \quad f'(c) = \frac{f(3) - f(-1)}{3 - (-1)}
\]

\[
f'(c) = 3 - 2c = \frac{0 - 4}{4}
\]

\[
3 - 2c = 1
\]

\[
c = 1
\]

Note: \(-1 < c < 3\).

P12

4. There is exactly one value that satisfies the conclusion of the mean value theorem for the function \(f(x) = x^3 + x - 1 \) on the interval \([0, 2]\). Give this value.