Info

- There is no Homework due next Monday.
- There are **EMCF**s due every MWF.
- There is an Online Quiz due Monday.
- Take care of Practice Test 2!!
- Schedule and take Test 2!

The Mean Value Theorem Section 4.1

P12

- 1. Use Newton's method with a guess of 2 to approximate a solution to $x^4 \sin(x) 8x = 0$.
- 2. Use differentials to approximate $\sin(61^\circ)$. Hint: Convert 61° to radians, and note that this value is close to $\pi/3$.

Question: How many values are there between 0 and 6 where the tangent line is parallel to the secant line connecting (0, f(0)) and (6, f(6))?

P12

3. How many values are there between 0 and 6 where the tangent line is parallel to the secant line connecting (0, f(0)) and (6, f(6))?

General Question: Are there values between a and b where the tangent line is parallel to the secant line connecting (a, f(a)) and (b, f(b))?

We see 2. $f'(c) = \frac{f(b) - f(a)}{b - a}$ tangent line $|b| = \frac{1}{b} = \frac$

Example: Verify the mean value theorem for $f(x) = 3x - x^2$ on the interval [-1,3].

We need to find
$$-1 < C < 3 \quad \text{so that}$$

$$f'(c) = \frac{f(3) - f(-1)}{3 - 1}$$

$$3 - 2C = \frac{0 - 4}{4}$$

Note: -1 < 1 < 3

P124. Then

4. There is exactly one value that satisfies the conclusion of the mean value theorem for the function $f(x) = x^3 + x - 1$ on the interval [0,2]. Give this value

