Info... Increasing and Decreasing Functions

o We will cover portions of 4.2 and 4.3 today. Intuitively, where is f

e Homework and EMCFs are posted. increasing? Decreasing? (] v‘\‘t?: {"/Aﬂ‘)
® Online Quiz 5 is due tonight at 11:59pm. —— — N
o Practice Test 2 is due tonight at 11:59pm.

® Please complete Online Quizzes 6 and 7 asap.

e Today is the last day to take Test 2. 0]
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Algebraic Definitions of Increasing and Decreasing on an Interval
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Definition: f'is increasing over an
interval I if and only if
fa) <fib)

for all a, b in I with a < b.

‘What property does the
derivative have on this
interval?
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Theorem: A function f'is increasing

on an interval I provided fis
continuous and

S1)>0

at all but finitely many values in 1.

Example: Dgtermine the intervalsof increaseand decreasefor
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Important Idea: Slope chqnﬂ 't
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Definition: f'is decreasing ove
interval I if and only if

Sfla)> fib)

ran

for all a, b in I with a < b.

‘What property does the
derivative have on this
interval?
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Theorem: A function f'is decreasing

on an interval I provided fis
continuous and

S1x)<0

at all but finitely many values in /.

Example: The graph of y=f"(x) is shown below. Give the interval(s) on
which £ is increasing, and the interval(s) on which f'is

decreasing
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Question: Can you determine the shap¢ of the graph of /2
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Local vs Absolute Extrema ok foss
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Question: Can you identify the local
extreme values of this function?
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Question: In general, what does it mean to say that a function f has a local
extreme value at x=c¢ ?

Question: Does every function have a largest value?
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Theorem: A continuous function £ on a closed bounded interval
[a,b] has both an absolute maximum value and an absolute
minimum value on the interval [a,b].

This is the Extreme Va_lg.e
Theorem!!

Remark: If no interval is specified, then we have to assume
that all values of x are valid, so long as they can be put in
the function.
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f(x)on[-44] * Question: Can you identify the absolute
extreme values of this function?
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Question: In general, what does it mean to say that a function f has an
absolute extreme value at x=c?

y=7() on [-4,4] ,

2] Question: What will be true about /' at
avalue of x where f has a local extreme
value?
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Note: These values of x are so important that we give them a special
name... Critical Numbers.
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Critical Numbers Exam ple: Find the eriticalnumbers for the function f(x): % Ot % K —6x+2.

Then classify each of the criticalnumbers as placeswhere the function

The value x = a is a critical number for / if and only if ¢ is in the domain of f° has a localminimum. local maximum or neither. .
. f—‘\ﬁ“ A4l a
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We can classify critical numbers and critical points as either local maximums éj ! (4= ¥ L= - £ /( 7)) =
or local minimums by using the slope chart.
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This is called the first derivative test. «7@31' £ lgc ot [y ek
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Example: The graph of y=f""'(x) is shown below. Classify the critical
numbers of f.

A y=r'




