Info...

e Test 3 1s scheduled for November 1-5. The

scheduler opens on October 18th.
e EMCFs and Homework are posted.

e Test 3 Review 1s posted.



Where 1s /' increasing/decreasing?

y=s(x)




e ' 15 decreasing

e ' 1S Increasing




Question: Suppose f 'is increasing on an interval. What are the
possible shapes for the graph of fover this interval?
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Question: Suppose f 'is decreasing on an interval. What are the
possible shapes for the graph of fover this interval?
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Inflection occurs at a value in the domain of f where
Concavity Changes!!

Example: Identify the inflection points and the intervals of cancavity of the
function graphed below.
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Popper P17
The graph of y = f(x) is shown.

1. Give the smallest critical
number of f.

!
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2. Give the smallest inflection
number of f.

3. Give the left endpoint of the
interval on which f 1s concave
down.




Example: The graph of /' is shown below. List the intervals of increase,
decrease, concave up and concave down for 7, and classify the
critical values for £ and list any inflection for f.
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Concavity and the Second Derivative
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Example: Determine the intervals of concavity and the inflection numbers
for f(x)=x"—3x>+2x—1
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The Second Derivative Test
for Classifying Critical Numbers

"o
(‘suppose £ T =0. | Spee + s

Question: What is the expected shape of the graph of f for a local
minimum to occur at x =c¢ ?
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Question: What is the expected shape of the graph of f for a local

maximum to occur at x =c ?
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Question: How can the second derivative help us determine the associated
shape? Does it ever fail?
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Example: Use the second derivative test to classify the critical numbers of
F(x)=-2x"+3x"+ 6x + 2.

See the video.
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