Info...

- Test 3 is scheduled for November 1-5. The scheduler opens on October 18th.
- EMCFs and Homework are posted.
- Test 3 Review is posted.

Where is f' increasing/decreasing?

Question: Suppose f ' is increasing on an interval. What are the possible shapes for the graph of f over this interval?

Question: Suppose f ' is <u>decreasing</u> on an interval. What are the possible shapes for the graph of f over this interval?

Inflection occurs at a value in the domain of f where **Concavity Changes!!**

Example: Identify the inflection points and the intervals of cancavity of the function graphed below.

Inflection occurs

at x=a and x=h.

Popper P17

The graph of y = f(x) is shown.

- 1. Give the smallest critical number of *f*.
- 2. Give the smallest inflection number of *f*.
- 3. Give the left endpoint of the interval on which f is concave down.

Example: The graph of f' is shown below. List the intervals of increase, decrease, concave up and concave down for f, and classify the critical values for f and list any inflection for f.

Concavity and the Second Derivative

f' is increasing on an inverval (f is concave up on an interval)

f' is decreasing on an inverval(f is concave down on an interval)

Example: Determine the intervals of concavity and the inflection numbers for $f(x) = x^3 - 3x^2 + 2x - 1$

The Second Derivative Test

for Classifying Critical Numbers

Suppose
$$f'(c) = 0$$
.

Spec f" is Continuous near c.

Question: What is the expected shape of the graph of f for a local minimum to occur at x = c?

C.U. Shope

Question: What is the expected shape of the graph of f for a local maximum to occur at x = c?

C.D. Shape

Question: How can the second derivative help us determine the associated shape? Does it ever fail?

$$f'(c) = 0$$
 and $f''(c) > 0 \Rightarrow$
 f has a local min at $f''(c) = 0$ and $f''(c) < 0 \Rightarrow$
 f has a local max at $f''(c) = 0$

$$f(x) = x^{4}$$
 $f'(x) = 4x^{3}$

Note: $f'(0) = 0$
 $f''(x) = (2x^{2})$
 $f''(0) = 0$

$$f(4) = -x^4$$
 $f'(4) = -4x^3$
 $f'(6) = 0$
 $f''(x) = -12x^2$
 $f''(6) = 0$

Example: Use the second derivative test to classify the critical numbers of $f(x) = -2x^3 + 3x^2 + 6x + 2$.

See the video.