Information

- Test 3 is 11/01 - 11/05!!
- Practice Test 3 is posted.
- Test 3 covers sections 3.9 - 4.8.
- We will do a partial review today and Friday.

Example: The graph of \(y = f(x) \) is shown below. Suppose Newton's method is used to approximate a solution to \(f(x) = 0 \) with one iteration, starting from a guess of \(x_0 \). Will the result be larger than or smaller than the actual positive solution? Explain.

Example: Use one iteration of Newton's method from a guess of \(x_0 = 1 \) to approximate a solution to \(x^3 - 3x^2 + 2x = 0.1 \).

\[
\begin{align*}
\frac{f(x)}{f'(x)} &= \frac{3x^2 - 6x + 2}{3x - 6} \\
x_1 &= 1 - \frac{f(1)}{f'(1)} = 1 - \frac{-0.1}{-1} = 1 - \frac{1}{10} = 0.9
\end{align*}
\]
Example: Verify the conclusion of the Mean Value Theorem for the function $f(x) = x^2 - 3x$ on the interval $[-1, 3]$.

Let $f'(c) = 2x - 3$.

Find c between -1 and 3 so that

$$f'(c) = \frac{f(3) - f(-1)}{3 - (-1)}$$

$$2c - 3 = \frac{0 - 4}{4}$$

$$2c - 3 = -1$$

$$c = 1$$

Note: $-1 < c < 3$.

Example: The graph of $y = f(x)$ is given below. Give the number of values that satisfy the conclusion of the mean value theorem on the interval $[-1/2, 5/2]$.

Concept	Comments
2. MV Theorem | If f is continuous on $[a,b]$ and differentiable on (a,b) then there is a value c between a and b so that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Slope of the T.L. at $x = c$

Slope of the second line.

3. Differentials | Tangent line approximation

Formula:

The differential of f at x_0 with increment h is

$$df = f'(x_0)h$$

The change in the independent variable

Approximating with differentials:

$$f(x_0 + h) \approx f(x_0) + f'(x_0)h$$

$$f(x_0 + h) = f(x_0) + f'(x_0)h$$

f where you want the value.
Example: Use differentials to approximate \(\sqrt{48.5} \).

\[
\frac{df}{dx} = \frac{1}{2\sqrt{x}}
\]

\[
f'(49) = \frac{1}{2 \cdot 7}
\]

\[
f(\sqrt{48.5}) \approx f(49) + f'(49)(-0.5)
\]

\[
= 7 + \frac{1}{14} \cdot (-0.5) = 7 - \frac{1}{28}
\]

\[
= \frac{195}{28} = 6.96429
\]

Note: \(\sqrt{48.5} = 6.96419 \ldots \)

Example: Circular disks are to be created having radius 5 cm, but due to errors in production, the actual radius could vary. The customer wants the total area of the disk to vary by no more than 2 mm². Use differentials to estimate the allowable error in the radius.

Quick Check:

- **Concept:** Increasing
- **Questions/Comments:** A function \(f \) is increasing on an interval \(I \) if and only if \(f(x) < f(y) \) for all \(x, y \) in \(I \) with \(x < y \).

- **Concept:** Decreasing
- **Questions/Comments:** A function \(f \) is decreasing on an interval \(I \) if and only if \(f(x) > f(y) \) for all \(x, y \) in \(I \) with \(x < y \).
Example: Give the intervals of increase and decrease for the function
\[f(x) = 2x^3 - 9x^2 - 24x + 6. \]

Pepper P20

\[f'(x) = 6x^2 - 18x - 24. \]

\[f''(x) \text{ exists for all } x. \]

\[f'(2) = 0. \]
\[6(x-3)(x+4) = 0 \]
\[f'(x) = 6(x-3)(x+4) = 0 \]
\[x = 3, x = -4 \text{, critical points.} \]

Step 1:

\[f'(x) = \begin{cases} + & x < -4 \text{ or } x > 3 \\ - & -4 < x < 3 \end{cases} \]

\[f'(x) = - \quad \text{increases on } (-\infty, -4) \text{ and } (3, \infty) \]
\[f'(x) = + \quad \text{decreases on } [-4, 3] \]

Concept

Questions/Comments

7. **Local Max/Min**

A function \(f \) has a local maximum at a value \(c \) if and only if \(f(c) \geq f(x) \) for all \(x \) near \(c \).

A function \(f \) has a local minimum at a value \(c \) if and only if \(f(c) \leq f(x) \) for all \(x \) near \(c \).

Graphically:

- \[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \]

Classifying:

- 1. **First derivative test**
- 2. **Second derivative test**

Example: The function \(f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - \frac{1}{3}x + 4 \) has critical numbers at \(x = -1, x = 0, x = 1, \) and \(x = 2 \). Use the first derivative test to classify these critical values.

\[f'(x) = x^2 - 2x^3 - x^2 + 2x \]
\[= x(x^2 - 2x^2 - x + 2) \]
\[f'(x) = x(x+1)(x-1)(x-2) \]

Step 1:

\[f'(x) = \begin{cases} + & x < -1 \text{ or } x > 2 \\ - & -1 < x < 1 \text{ or } 1 < x \end{cases} \]

\[f'(x) = + \quad \text{increases on } (-\infty, -1) \text{ and } (2, \infty) \]
\[f'(x) = - \quad \text{decreases on } (-1, 1) \text{ and } (1, 2) \]

\[f \text{ has local maximum at } x = -1 \text{ and } x = 1. \]
\[f \text{ has local minimum at } x = 0 \text{ and } x = 2. \]
Example: The function \(f(x) = \frac{1}{5}x^5 - \frac{1}{2}x^2 - \frac{1}{3}x^3 + x^2 \) has critical numbers at \(x = -1, x = 0, x = 1, \) and \(x = 2. \) Use the second derivative test to classify these critical values.

Next Time

<table>
<thead>
<tr>
<th>Concept</th>
<th>Questions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Absolute Max/Min</td>
<td>A function (f) on an interval (I) has an absolute maximum at a value (c) in (I) if and only if (f(c) \geq f(x)) for all (x) in (I).</td>
</tr>
<tr>
<td>Graphically: (f) on ([a,b]).</td>
<td></td>
</tr>
</tbody>
</table>

A function \(f \) on an interval \(I \) has an absolute minimum at a value \(c \) in \(I \) if and only if \(f(c) \leq f(x) \) for all \(x \) in \(I \).

Example: Give the maximum value of the function \(f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 - 4x + 5 \) on the interval \([1,5]\).

Next Time

Example: Find the largest possible value of \(xy \) given that \(x \) and \(y \) are both positive and \(2x + y = 40 \).

Next Time

Example: Find the largest possible area for a rectangle with base on the x-axis and upper vertices on the curve $y = 4 - x^2$.

Next Time

9. Concavity

A function f is concave up on an interval I if and only if $f''(x)$ is increasing on I.

A function f is concave down on an interval I if and only if $f''(x)$ is decreasing on I.

Graphically:

Quick Check:

10. Inflection

A function f has inflection at a value c provided c is in the domain of f and the concavity is different on the left of c than it is on the right of c.

Graphically:

Quick Check: ...change in concavity...

Example: The graph of f' is shown below. Use this graph to find classify critical numbers, intervals of increase and decrease, intervals of concavity, and inflection for f. Then give a plausible graph for f.

Next Time
11. Asymptotes and behavior at the edge of the domain.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Questions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Asymptotes:</td>
<td></td>
</tr>
<tr>
<td>Vertical Asymptotes:</td>
<td></td>
</tr>
</tbody>
</table>

12. Graphing

1. Domain
2. Asymptotes and behavior for x near the "edges" of the domain.
3. First Derivative
 - critical numbers
 - slope chart
 - intervals of increase
 - intervals of decrease
 - classify c.n.
4. Second Derivative
 - intervals of concavity
 - inflection
5. Graph it!! (plot plots associated with the information above, along with the y-intercept, and the x-intercept(s) if they are easily found.)

Example: Graph $f(x) = \frac{x^2}{3-2x}$