Information

- Test 3 is 11/01 11/05!!
- Practice Test 3 is posted.
- Test 3 covers sections 3.9 4.8.
- We will do a partial review today and Friday.

Example: The graph of y = f(x) is shown below. Suppose Newton's method is used to approximate a solution to f(x) = 0 with one iteration, starting from a guess of x_0 . Will the result be larger than or smaller than the actual positive solution? Explain.

Example: Use one iteration of Newton's method from a guess of $x_0 = 1$ to approximate a solution to $x^3 - 3x^2 + 2x = 0.1$. **Popper P20**

$$f(1) = -\frac{1}{10}$$

$$f'(1) = -1$$

$$f(x)$$

$$f'(x) = 3x^{2} - 6x + 2$$

$$x_1 = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{-1/10}{-1} = 1 - \frac{1}{10}$$

$$= 0.9$$

Concept	Comme	nts
2. MV Theorem If f is continuous on $[a,b]$ and differentiable on (a,b) then there is a value c between a and b so	f'(c) =	$\frac{f(b)-f(a)}{b-a}$
that $f'(c) = \frac{f(b) - f(a)}{b - a}$	Slope of The T.L.	Slope of the
	at X=C	secont line.

Example: Use differentials to approximate $\sqrt{48.5}$.

Example: Circular disks are to be created having radius 5 cm, but due to errors in production, the actual radius could vary. The customer wants the total area of the disk to vary by no more than 2 mm². Use differentials to estimate the allowable error in the radius.

Popper P20

See the video

3. 3 + 2 =

Concept	Questions/Comments
4. Increasing	Quick Check:
A function f is increasing on an interval I if and only if $f(x) < f(y)$ for all x, y in I with $x < y$.	f' exists on I and $f' > 0$ on I except possibly at finitely many places.

Concept	Questions/Comments
5. Decreasing	Quick Check:
A function f is decreasing on an interval I if and only if $f(x) > f(y)$ for all x, y in I with $x < y$.	f' exists on I and $f' < 0$ on I except possibly at finitely many places.

Concept	Questions/Comments
Local Max/Min	Graphically: • • •
A function f has a local maximum at a value c if and only if $f(c) \ge f(x)$ for all x near c . A function f has a local minimum at a value c if	Classifying: I. First derivative test
and only if $f(c) \le f(x)$ or all x near c .	· 2. Second derivative fast (need f" to exist)

Example: The function $f(x) = \frac{1}{5}x^5 - \frac{1}{2}x^4 - \frac{1}{3}x^3 + x^2$ has critical numbers at x = -1, x = 0, x = 1, and x = 2. Use the second derivative test to classify these critical values.

Next Time

Concept	Question	s/Comments
8. Absolute Max/Min	Graphically:	1
A function f on an interval I has an absolute maximum at a value c in I if and only if $f(c) \ge f(x)$ for all x in I .	f on [a,b].	a
A function f on an interval I has an absolute minimum at a value c in I if and only if $f(c) \le f(x)$ for all x in I .		

Example: Give the maximum value of the function $f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 - 4x + 5$ on the interval [1,5].

Next Time

Example: Find the largest possible value of xy given that x and y are both positive and 2x + y = 40.

Next Time

Example: Find the largest possible area for a rectangle with base on the x-axis and upper vertices on the curve $y = 4 - x^2$.

Next Time

Concept Next	Time Questions/Comments
9. Concavity	Graphically:
A function f if concave up on an interval I if and only if f'(x) is increasing on I .	
A function f if concave down on an interval I if and only if f'(x) is decreasing on I .	Quick Check:

Next Time	
Concept	Questions/Comments
10. Inflection	Graphically:
A function f has inflection at a value c provided c is in the domain of f and the concavity is different on the left of c than it is on the right of c .	Quick Check:change in concavity

Next Time	
Concept	Questions/Comments
11. Asymptotes and behavior at the edge of the domain.	Horizontal Asymptotes:
	Vertical Asymptotes:
at the edge of the domain.	Vertical Asymptotes:

Example: Graph $f(x) = \frac{x^2}{3 - 2x}$	
Next Time	

Next T	ime
Concept	Questions/Comments
12. Graphing	
1. Domain	
Asymptotes and beh	havior for x near the "edges" of the domain.
3. First Derivative	-
critical numb	pers
slope chart	
intervals of i	ncrease
intervals of o	decrease
classify c.n.	
4. Second Derivative	
intervals of c	concavity
inflection	·
5. Graph it!! (plot plots	s associated with the information above, along with
1 1	ex =