Information

e Test3is 11/01 - 11/05!!

e Practice Test 3 is posted.

e Test 3 covers sections 3.9 - 4.8.

e We will do a partial review today and Friday.
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Comments

1. Newton's Method

Goal: Approximate a solution to f(x) = 0.
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Example: The graph of y = f(x) is shown below. Suppose Newton's method is
used to approximate a solution to f(x) =0 with one iteration, starting from a
guess of x;. Will the result be larger than or smaller than the actual positive
solution? Explain.
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Example: Use one iteration of Newton's method from a guess of x3=1 to
approximate a solution to x° — 3x> + 2x =0.1.
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2. MV Theorem

differentiable on (a,b) then there
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Example: Verify the conclusion of the Mean Value Theorem for the
function f(x) =x* - 3x on the interval [-1,3].
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Example: The graph of y =/ (x) is given below. Give the number of values

that satisfy the conclusion of the mean value theorem on the interval

[-1/2,52].
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3. Differentials éf—~»’ ’\“”‘Q‘JNT Line ‘D](Q ¢ 1y .

The differential of /" at xo with increment /4 is given by

Formula: o{r— = gl(\"o\]ﬂ
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Approximating with differentials: :
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Example: Use differentials to approximate /48.5 .
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Example: Circular disks are to be created having radius 5 cm, but due to errors
in production, the actual radius could vary. The customer wants the total area of
the disk to vary by no more than 2 mm’. Use differentials to estimate the
allowable error in the radius. 55—
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Concept Questions/Comments
4. Increasing Quick Check:
A function / is increasing
on an interval / if and only S " existson /] and )
i) < £() for all />0 on 1 except possibly
) X at finitely many places.
x,yinf withx <y,

Concept Questions/Comments
5. Decreasing Quick Check:
Atunction / is decreasing y . I and

: i " exists on/ an
'Ofl @1 um:n?\al I : if and only 77 <0 on I except possibly
if f(x) > f () for all at finitely many places.
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Example: Give the intervals of increase and decrease for the function
f) =2 -9 —24x+6. T -
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6. Critical Number Function shapes at a critical number:
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) Example: The function f(x)= leo % oLy
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: * 4" has critical numbers at
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x=-1,x=0, x=1, and x=2. Use the second derivative test to classify
these critical values.

Example: The function f(x)= le o ¥ - %13 +x has critical numbers at
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8. Absolute Max/Min Graphically:

2o e o 3 “on [a,b].
A function / on an interval e [_']

; a - b
{ has an absolute maximum clpsed Yﬁv"‘ﬂ"{ /T
at a value ¢ in 7 if and only if i nJ(Ul:ﬁ " ]

fle)= f(x)forall xin 7.

A function / on an interval Quick Check:
1 has an absolute minimum 1. Find f(a) and f(b).
at a value ¢ in / if and only if
fle)= f(x) forall x in /. 2. Find all critical values in the interval
[a.b], and evaluate f at each of these.

3. Compare the values from 1 and 2.

Example: Give the maximum value of the function f(x)= % X - %.\': —4x+5

on the interval [1.5].
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Example: Find the largest possible value of xy given that x and y are both
positive and 2x + y=40.

Next Time




Example: Find the largest possible area for a rectangle with base on the
x-axis and upper vertices on the curve y =4 — x*.

Next Time

Concept Questions/Comments

9. Concavity Graphically:

Atunction / if concave up
on an interval / if and only if

/() is increasing on /
Atunction / if concave down

on an interval 7 if and only if Quick Check:

£ '(x) is decreasing on /.
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10. Inflection

A function / has inflection at
avalue ¢ provided ¢ is in the
domain of /" and the concavity
is different on the left of ¢ than

it is on the right of ¢

Graphically:

Quick Check:  ...change in concavity...

Next Time

Example: The graph of f 'is shown below. Use this graph to find classify
critical numbers, intervals of increase and decrease, intervals of concavity,
and inflection for f. Then give a plausible graph for /.
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Concept Questions/Comments

11. Asymptotes and behavior Horizontal Asymptotes:
at the edge of the domain.

Vertical Asymptotes:

Next Time

Concept ‘ Questions/Comments

12. Graphing ‘
Next Time
1. Domain
2. Asymptotes and behavior for x near the "edges" of the domain.,
3. First Derivative
critical numbers
slope chart
intervals of increase
intervals of decrease
classify c.n.
4. Second Derivative
intervals of concavity
inflection
5. Graph it!! (plot plots associated with the information above, along with
the y - intercept, and the x - intercept(s) if they are easily found.

Example: Graph f(x)=3 3
-2x

Next Time




