Information

- Test 3 is 11/01 11/05!!
- Practice Test 3 is posted.
- Test 3 covers sections 3.9 4.8.
- We will do a partial review today and Friday.

Example: The graph of y = f(x) is shown below. Suppose Newton's method is used to approximate a solution to f(x) = 0 with one iteration, starting from a guess of x_0 . Will the result be larger than or smaller than the actual positive solution? Explain.

Example: Use one iteration of Newton's method from a guess of $x_0 = 1$ to approximate a solution to $x^3 - 3x^2 + 2x = 0.1$.

$$f(t) = -\frac{1}{10}$$

$$f'(t) = -\frac{1}{10}$$

$$f'(x) = 3x^{2} - 6x + 2$$

$$x_{1} = 1 - \frac{f(t)}{f'(t)} = 1 - \frac{1}{10} = 0.9$$

Example: The graph of y = f(x) is given below. Give the number of values that satisfy the conclusion of the mean value theorem on the interval [-1/2,5/2].

Example: Verify the conclusion of the Mean Value Theorem for the function $f(x) = x^2 - 3x$ on the interval [-1, 3].

$$f'(x) = 2x - 3$$
Find c btwn -1 and 3

so that
$$f'(c) = \frac{f(3) - f(-1)}{3 - -1}$$

$$2c - 3 = \frac{0 - 4}{4}$$

$$2c - 3 = -1 \implies 2c = 2 \implies C = 1$$
Note: $-1 < 1 < 3$

Concept	Comments
3. Differentials	- Tangent Line Approx.
	f at x_0 with increment h is given by
Formula: df	$= f'(x_0)h$
Here of f	= f(x0+h) - f(x0)
f(x	60+h) - f(x0) & f'(x0) h
i.e.	$f(x_0+h) \approx f(x_0) + f'(x_0)h$
Approximating with differ	entials:

Example: Use differentials to approximate
$$\sqrt{48.5}$$
.

Note: we know $\sqrt{49} = 7$.

$$f(x) = \sqrt{x} \qquad f'(x) = \frac{1}{2\sqrt{x}}$$

$$f(48.5) \approx f(49) + f'(49)(-.5)$$

$$\uparrow \qquad \qquad \downarrow \qquad$$

Concept	Questions/Comments
4. Increasing	Quick Check:
A function f is increasing on an interval I if and only if $f(x) < f(y)$ for all x, y in I with $x < y$.	f' exists on I and $f' > 0$ on I except possibly at finitely many places.

Concept	Questions/Comments
5. Decreasing	Quick Check:
A function f is decreasing on an interval I if and only if $f(x) > f(y)$ for all x, y in I with $x < y$.	f' exists on I and $f' < 0$ on I except possibly at finitely many places.
1	

raphically:		\ /	
	<u> </u>	\ \ \	•
lassifying:	1st deriva 2nd deri (can fail)	tive tes	+
	lassifying:	Classifying: 1 st derival 2 nd derival (can fail)	Classifying: 1 st derivative tes 2nd derivative tes (can fail)

Concept	Questions/Comments
6. Critical Number	Function shapes at a critical number:
A value c is a critical number for a function f if and only if c is in the domain of f and either f'(c) = 0 or $f'(c)$ d.n.e.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Example: The function $f(x) = \frac{1}{5}x^5 - \frac{1}{2}x^4 - \frac{1}{3}x^3 + x^2$ has critical numbers at x = -1, x = 0, x = 1, and x = 2. Use the second derivative test to classify these critical values. $f'(x) = x^4 - 2x^3 - x^2 + 2x$

$$f''(x) = 4x^3 - 6x^3 - 2x + 2$$

$$f''(x) = 4x$$

$$f''(-1) = -4 - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

$$f''(x) = 4x - 6 + 2 + 2 = -6 \le 0$$

f"(0)= 270 .. f has a local min at x=0.0

Example: Give the maximum value of the function $f(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 - 4x + 5$ on the interval [1,5].

1.
$$f(1) = \frac{1}{3} - \frac{2}{2} - \frac{1}{2} + \frac{1}{3} = \frac{1}$$

$$f(s) = \frac{125}{3} - \frac{12}{2} - 20.45$$

$$= \frac{125}{3} - \frac{75}{2} - 15 = \frac{125}{3} - \frac{105}{2}$$

$$=\frac{250-315}{6}=\frac{-65}{6}$$

$$= \frac{13}{3} - \frac{13}{3} = \frac{15}{3}$$

$$= \frac{250 - 315}{6} = \frac{-65}{6}$$
2. $f'(x) = x^2 - 3x - 4 = (x - y)(x + 1)$
evists for all x.

Set $f'(x) = 0$.
$$(x - y)(x - y) = 0$$

$$f(4) = \frac{64}{3} - 24 - (6+5) = \frac{64}{3} - 35 = \frac{64}{3} - \frac{165}{3}$$

$$= -\frac{41}{3}$$

3. Compare.

ompare.
The abs min value is 3, and it The abs max value is -t, and it occurs at X=1.

Example: Find the largest possible value of xy given that x and y are both positive and 2x + y = 40.

Next Time

Example: Find the largest possible area for a rectangle with base on the *x*-axis and upper vertices on the curve $y = 4 - x^2$.

Next Time

Concept	Questions/Comments
10. Inflection	Graphically:
A function f has inflection at a value c provided c is in the domain of f and the concavity is different on the left of c than it is on the right of c .	Quick Check:change in concavity
	Next Time

Example: The graph of f' is shown below. Use this graph to find classify critical numbers, intervals of increase and decrease, intervals of concavity, and inflection for f. Then give a plausible graph for f.

	Questions/Comments
1. Asymptotes and behavior t the edge of the domain.	Horizontal Asymptotes:
	Vertical Asymptotes:
Next Time	

Example: Graph
$$f(x) = \frac{x^2}{3 - 2x}$$

Next Time

Concept	Questions/Comments
12. Graphing	Next Time
1. Domain	
Asymptotes and bel	havior for x near the "edges" of the domain.
First Derivative	
critical num	bers
slope chart	
intervals of	increase
intervals of	decrease
classify c.n.	
Second Derivative	
intervals of	concavity
inflection	
	s associated with the information above, along with
the y - intercept, and the	x - intercept(s) if they are easily found.

7