Area and Integrals

1. Test 3 has nearly started.

- 2. The notes and video are posted from last night's review.
- 3. There is no Homework due on Monday. There will be an EMCF due on Monday and a Quiz due Monday night.
- 3. Practice Test 3 is due very soon!
- 4. We are starting chapter 5 today.

Question: Is there a method for approximating the area below?

Let's Find the Exact Value for this Area

$$A'(x) = x^{2}, \quad \underline{A(0)} = 0.$$

$$A(x) = \frac{1}{3}x^{3} + C$$

$$A(x) = \frac{1}{3}x^{3} + C$$

$$A(x) = \frac{1}{3}x^{3}$$

$$A($$

Step 4: Determine the original area.

Let's generallize this process:

Suppose f(x) is nonnegative on the interval [a,b].

Goal: Find the area of the region between the x-axis and the graph of y = f(x) over the interval [a,b].

Computing the area:

An antiderivative 1. Find any function F(x) so that F'(x) = f(x).

2. The area is given by F(b) - F(a).

Notation: Suppose f(x) is a continuous function on the interval [a,b]. If F(x) is an anti-derivative of f(x), then

$$\int_{a}^{b} f(x)dx = \text{the Riemann Integral of} f(x) \text{ on the interval } [a,b].$$

and

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x) \Big|_{\alpha}^{b}$$

Note: If f(x) is nonnegative on the interval [a,b], then the Riemann integral of f(x) on the interval [a,b] is the area bounded between the x-axis and the graph of y = f(x) on the interval [a,b].

Note: If f(x) is NOT nonnegative on the interval [a,b], then this Riemann integral of f(x) on the interval [a,b] IS NOT an area. It is just a number, and we will see the significance later.

Example: Give the area bounded between the x-axis and the graph of $y = \sin(x)$ on the interval $[0,\pi]$.

Example: Give the values for

$$\int_{-1}^{2} (x^{2} + x) dx, \quad \int_{1}^{3} \left(2\sqrt{x} + \frac{1}{x^{2}} \right) dx$$

Note:
$$x^2+x$$
 is

negative on a

portion of [-1,2].

So $\int_{2}^{2} (x^2+x) dx$ does not

$$\int_{-1}^{2} (x^{2}+x) dx = \left(A_{n} \text{ antiderivative of } x^{2}+x \right) \Big|_{-1}^{2}$$

$$= \left(\frac{1}{3}x^{3} + \frac{1}{2}x^{2} \right) \Big|_{-1}^{2}$$

$$= \left(\frac{8}{3} + 2\right) - \left(\frac{-1}{3} + \frac{1}{2}\right)$$

$$= \frac{14}{3} - \frac{1}{6} = \frac{27}{6} = \frac{9}{2}.$$

$$\int_{1}^{3} \left(2\sqrt{x} + \frac{1}{x^{2}}\right) dx$$
Note: $2\sqrt{x} + \frac{1}{x^{2}} > 0$ on
$$\begin{bmatrix} 1,3 \end{bmatrix}$$

$$\int_{1}^{3} \left(2\sqrt{x} + \frac{1}{x^{2}}\right) dx = A \cos x \cos x$$

$$\int_{1}^{3} \left(2\sqrt{x} + \frac{1}{x^{2}}\right) dx = \left(an + i d \sin x + \frac{1}{x^{2}}\right) dx$$

$$= \left(\frac{4}{3} \times x^{2} - \frac{1}{x}\right)$$

$$= \left(\frac{4}{3} \times 3^{2} - \frac{1}{3}\right) - \left(\frac{4}{3} - 1\right)$$

$$= \int_{1}^{3} 0u \cdot \#$$