Info...

- A Quiz is due tonight.
- A new **EMCFs** and **Homework** are posted.

Sy Liebergot, Former NASA Flight Controller

"Apollo13: The Longest Hour"

Tuesday, November 13 7 – 8 pm in SEC 100

Examples:
$$\int x^{2} dx = \frac{1}{3} \times^{3} + \frac{1}{3} \times \frac{1}{$$

Note: Most differentiation involves the chain rule, so we should expect that most antidifferentiation will involve

undoing the chain rule.

(u-substitution)

Undoing the chain rule	
F'(x)	F(x)
2 Cos(2 x)	sin(2x) + C
2 × cos(x2)	s'in(x2) + C
(x) $\cos(u)\frac{du}{dx}$	sin(u) + C
8 x (x2+1)3	$(x^2+1)^4+C$
(n+1) un du	Un+1 + C (n+-)
(t) U du dx	1 m+1 + C
Sin (n) du	- cos (u) + C

Undoing the chain rule...
$$\int u^n du = \frac{1}{n+1} u^{n+1} + C \quad , \quad \land \ \ \ + -1$$

$$\int \cos(u) du = \sin(u) + C$$

$$\int \sin(u) du = -\cos(u) + C$$

$$\int \sec^2(u) du = + a_n(u) + C$$

$$\int \csc^2(u) du = -\cot(u) + C$$

$$\int \csc^2(u) du = -\cot(u) + C$$

Examples:
$$\int \cos(2x) 2 dx = \sin(2x) + C$$
 $u = x^2$
 $\int x \sin(x^2) dx = \frac{1}{2} \int \sin(x^2) 2 \times dx = \frac{1}{2} \int \sin(u) du$
 $= \frac{1}{2} \cos(u) + C = \frac{1}{2} \cos(x^2) + C$
 $u = x^2 + 1$
 $\int x (x^2 + 1)^4 dx = \frac{1}{2} \int (x^2 + 1)^4 2 \times dx = \frac{1}{2} \int u^4 du$
 $= \frac{1}{10} u^5 + C = \frac{1}{10} (x^2 + 1)^5 + C$
 $u = 2x dx$
 $\int \frac{\cos(x)}{\sqrt{2 + \sin(x)}} dx = \int (2 + \sin(x))^{\frac{1}{2}} \frac{\cos(x) dx}{\sqrt{2 + \sin(x)}}$
 $du = \cos(x) dx$
 $= \int u^4 du = 2 u^5 + C$
 $= 2 \sqrt{2 + \sin(x)} + C$

Question: How do we handle *u*-substitution with a definite integral?

Answer: We change the limits of integration to reflect the substitution.

Example:
$$\int_{0}^{1} 3x^{2} \sin(2x^{3}-1) dx =$$

$$(U=2x^{3}-1)$$

$$du=6x^{2}dx$$

$$y=1 \Rightarrow u=1$$

$$= \frac{1}{2} \int \sin(u) du$$

$$= -\frac{1}{2} \cos(u)$$

$$= -\frac{1}{2} \cos(u)$$

$$\cos(u) = \cos(-1)$$

$$= -\frac{1}{2} \left(\cos(1) - \cos(-1)\right)$$

Example:
$$\int_{0}^{1} x (x^2 + 1)^4 dx =$$

See the video!!